期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
GABOR ANALYSIS OF THE SPACES M(p,q,w)(R^d) AND S(p,q,r,w,ω)(R^d)
1
作者 ayse sandιkι A.Turan Grkanlι 《Acta Mathematica Scientia》 SCIE CSCD 2011年第1期141-158,共18页
Let g be a non-zero rapidly decreasing function and w be a weight function. In this article in analog to modulation space, we define the space M(p, q, w)(Rd) to be the subspace of tempered distributions f ∈ S′... Let g be a non-zero rapidly decreasing function and w be a weight function. In this article in analog to modulation space, we define the space M(p, q, w)(Rd) to be the subspace of tempered distributions f ∈ S′(Rd) such that the Gabor transform Vg(f) of f is in the weighted Lorentz space L(p, q, wdμ) (R2d). We endow this space with a suitable norm and show that it becomes a Banach space and invariant under time frequence shifts for 1 ≤ p, q ≤ ∞. We also investigate the embeddings between these spaces and the dual space of M(p, q, w)(Rd). Later we define the space S(p, q, r, w, ω)(Rd) for 1 p ∞, 1 ≤ q ≤ ∞. We endow it with a sum norm and show that it becomes a Banach convolution algebra. We also discuss some properties of S(p, q, r, w, ω)(Rd). At the end of this article, we characterize the multipliers of the spaces M(p, q, w)(Rd) and S(p, q, r, w, ω)(Rd). 展开更多
关键词 Gabor transform weigted Lorentz space MULTIPLIER
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部