Synthesized iron oxyhydroxide was applied for the adsorptive removal of As(V)and As(III)from the aquas media.Additionally,this investigation highlighted the synergistic effect of calcium carbonate in conjunction with ...Synthesized iron oxyhydroxide was applied for the adsorptive removal of As(V)and As(III)from the aquas media.Additionally,this investigation highlighted the synergistic effect of calcium carbonate in conjunction with iron oxyhydroxide,resulting in enhanced removal efficiency.The experiment was conducted under various conditions:concentration,dosage,pH,agitation,and temperature.Material characterizations such as Brunauer Emmett Teller,X-ray diffraction,scanning electron microscopy,and Fourier transform infrared spectroscopy were implied to understand adsorption mechanisms.The Langmuir model revealed optimal concentrations for As(V)=500μg/L at pH-5 and As(III)=200μg/L at pH-7,resulting in 95%and 93%adsorption efficiencies,respectively.Maximum adsorption capacities“qm”were found to be 1266.943μg/g for As(V)and 1080.241μg/g for As(III).Freundlich model demonstrated favorable adsorption by indicating“n>1”such as As(V)=2.542 and As(III)=2.707;similarly,the speciation factor“RL<1”for both species as As(V)=0.1 and As(III)=0.5,respectively.The kinetic study presented a pseudo-second-order model as best fitted,indicating throughout chemisorption processes for removing As(V)and As(III).Furthermore,incorporating calcium carbonate presented a significant leap in the removal efficiency,indicating As(V)from 95%to 98%and As(III)from 93%to 96%,respectively.Our findings offer profound motivation for developing effective and sustainable solutions to tackle arsenic contamination,underscoring the exceptional promise of iron oxyhydroxide in conjunction with calcium carbonate to achieve maximum removal efficiency.展开更多
This study reports a deformation limit for the initiation of ductile fracture failure in fatigue-cracked circular hollow section (CHS) X- and K-joints subjected to brace axial tension. The proposed approach sets the...This study reports a deformation limit for the initiation of ductile fracture failure in fatigue-cracked circular hollow section (CHS) X- and K-joints subjected to brace axial tension. The proposed approach sets the deformation limit as the numerically computed crack driving force in a fatigue crack at the hot-spot location in the tubular joint reaches the material fracture toughness measured from standard fracture specimens. The calibration of the numerical procedure predicates on reported numerical computations on the crack driving force and previously published verification study against large-scale CHS X-joints with fatigue generated surface cracks. The development of the deformation limit includes a normalization procedure, which covers a wide range of the geometric parameters and material toughness levels. The lower-bound deformation limits thus developed follow a linear relationship with respect to the crack-depth ratio for both X- and K-joints. Comparison of the predicated deformation limit against experimental on cracked tubular X- and K- joints demonstrates the conservative nature of the proposed deformation limit. The proposed deformation limit, when extrapolated to a zero crack depth, provides an estimate on the deformation limits for intact X- and K-joints under brace axial loads.展开更多
基金funded by the National Natural Science Foundation of China(Nos.42177078 and 42020104005).
文摘Synthesized iron oxyhydroxide was applied for the adsorptive removal of As(V)and As(III)from the aquas media.Additionally,this investigation highlighted the synergistic effect of calcium carbonate in conjunction with iron oxyhydroxide,resulting in enhanced removal efficiency.The experiment was conducted under various conditions:concentration,dosage,pH,agitation,and temperature.Material characterizations such as Brunauer Emmett Teller,X-ray diffraction,scanning electron microscopy,and Fourier transform infrared spectroscopy were implied to understand adsorption mechanisms.The Langmuir model revealed optimal concentrations for As(V)=500μg/L at pH-5 and As(III)=200μg/L at pH-7,resulting in 95%and 93%adsorption efficiencies,respectively.Maximum adsorption capacities“qm”were found to be 1266.943μg/g for As(V)and 1080.241μg/g for As(III).Freundlich model demonstrated favorable adsorption by indicating“n>1”such as As(V)=2.542 and As(III)=2.707;similarly,the speciation factor“RL<1”for both species as As(V)=0.1 and As(III)=0.5,respectively.The kinetic study presented a pseudo-second-order model as best fitted,indicating throughout chemisorption processes for removing As(V)and As(III).Furthermore,incorporating calcium carbonate presented a significant leap in the removal efficiency,indicating As(V)from 95%to 98%and As(III)from 93%to 96%,respectively.Our findings offer profound motivation for developing effective and sustainable solutions to tackle arsenic contamination,underscoring the exceptional promise of iron oxyhydroxide in conjunction with calcium carbonate to achieve maximum removal efficiency.
文摘This study reports a deformation limit for the initiation of ductile fracture failure in fatigue-cracked circular hollow section (CHS) X- and K-joints subjected to brace axial tension. The proposed approach sets the deformation limit as the numerically computed crack driving force in a fatigue crack at the hot-spot location in the tubular joint reaches the material fracture toughness measured from standard fracture specimens. The calibration of the numerical procedure predicates on reported numerical computations on the crack driving force and previously published verification study against large-scale CHS X-joints with fatigue generated surface cracks. The development of the deformation limit includes a normalization procedure, which covers a wide range of the geometric parameters and material toughness levels. The lower-bound deformation limits thus developed follow a linear relationship with respect to the crack-depth ratio for both X- and K-joints. Comparison of the predicated deformation limit against experimental on cracked tubular X- and K- joints demonstrates the conservative nature of the proposed deformation limit. The proposed deformation limit, when extrapolated to a zero crack depth, provides an estimate on the deformation limits for intact X- and K-joints under brace axial loads.