期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Visible light-driven photo remediation of hazardous cationic dye via Ce-doped WO_(3) nanostructures 被引量:1
1
作者 azra haroon Kaseed Anwar Arham S.Ahmed 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第5期869-878,I0003,共11页
Ce-doped WO_(3) nanoparticles were successfully synthesized by the sol-gel method and characterized through advanced characterization techniques.The high resolution transmission electron microscopy(HRTEM)and scanning ... Ce-doped WO_(3) nanoparticles were successfully synthesized by the sol-gel method and characterized through advanced characterization techniques.The high resolution transmission electron microscopy(HRTEM)and scanning electron microscopy(SEM)results show a reduction in the agglomeration of nanoparticles upon doping.The energy dispersive X-ray(EDX)analysis validates the existence of the Ce element in all the doped samples.X-ray photoelectron spectroscopy(XPS)and Raman spectra justify the presence of structural defects(oxygen vacancies)and successful formation of the monoclinic WO_(3) phase,respectively.The Kubelka-Munk function indicates a decrease in band gap with doping,while photoluminescence(PL)spectra show intense visible and UV emissions,Significantly,all doped samples exhibit higher photocatalytic performance than pure WO_(3) nanoparticles,with the 6 wt%Ce-doped sample displaying the highest degradation rate.Doping with Ce can help to increase the surface area of WO_(3),thereby improving its photoactivity,Moreover,a correlation between PL and photocatalysis is established in the light of oxygen vacancies suggesting a direct dependence of high photocatalytic activity on strong PL signals of WO_(3) nanostructures.Trapping experiments further reveal that the degradation process is primarily driven by active species,providing insight into a plausible photocatalytic mechanism. 展开更多
关键词 WO_(3) Rare-earth element Environmental crisis Oxygen vacancies LUMINESCENCE PHOTOCATALYSIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部