The magnetic properties and magnetocaloric effect in Fe4MnSi3B~ compounds with x=0, 0.05, 0.10, 0.15, 0.20, 0.25 have been investigated. X-ray diffraction study shows that all these compounds investigated crystallize ...The magnetic properties and magnetocaloric effect in Fe4MnSi3B~ compounds with x=0, 0.05, 0.10, 0.15, 0.20, 0.25 have been investigated. X-ray diffraction study shows that all these compounds investigated crystallize in the MnsSi3-type structure with space group P63/mcm. Boron insertion in the host ternary silicide Fe4MnSi3 does not change the crystal symmetry, only leads to an increase of the lattice parameters, indicating the B atoms entered the interstitial sites. With increasing B content, the Curie temperature shifts to higher temperatures. The maximal magnetic-entropy changes of the Fe4MnSi3Bx compounds with x=0, 0.10 and 0.20 are about 1.8 J/(kg.K), 1.8 J/(kg-K) and 1.6 J/(kg.K), respectively, for a field change from 0 to 1.5 T.展开更多
基金supported by the National Natural Science Foundation of China (GrantNo.50661004)the Graduate Student Foundation of Inner Mongolia Normal University (No.YJSZD07002)partially supported by the scientific exchange program between the Netherlands and China
文摘The magnetic properties and magnetocaloric effect in Fe4MnSi3B~ compounds with x=0, 0.05, 0.10, 0.15, 0.20, 0.25 have been investigated. X-ray diffraction study shows that all these compounds investigated crystallize in the MnsSi3-type structure with space group P63/mcm. Boron insertion in the host ternary silicide Fe4MnSi3 does not change the crystal symmetry, only leads to an increase of the lattice parameters, indicating the B atoms entered the interstitial sites. With increasing B content, the Curie temperature shifts to higher temperatures. The maximal magnetic-entropy changes of the Fe4MnSi3Bx compounds with x=0, 0.10 and 0.20 are about 1.8 J/(kg.K), 1.8 J/(kg-K) and 1.6 J/(kg.K), respectively, for a field change from 0 to 1.5 T.