期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects of rainwater harvesting on herbage diversity and productivity in degraded Aravalli hills in western India 被引量:3
1
作者 G. Singh G.R. Choadhary +1 位作者 b. ram N.K. Limba 《Journal of Forestry Research》 SCIE CAS CSCD 2011年第3期329-340,共12页
Over-exploitation and rural growth have severely damaged native vegetations of Aravalli hills in Rajasthan, India. This study was conducted to evaluate the effects of different restoration practices (i.e., rainwater ... Over-exploitation and rural growth have severely damaged native vegetations of Aravalli hills in Rajasthan, India. This study was conducted to evaluate the effects of different restoration practices (i.e., rainwater harvesting (RWH) and planting of tree seedlings) on improve- ment in soil water and nutrients and growth and biomass of herbaceous vegetation. Contour trench (CT), Gradonie (G), Box trench (BT), V-ditch (VD) and a control were imposed on 75 plots (each of 700 m 2 ) in natural slope gradient defined as 10%, 10% 20% and 20% slopes in 2005. Each plot had three micro-sites of 1-m 2 at up (USP), middle (MSP) and lower (LSP) part of the plot for observation in 2008. The existed gradient (due to soil texture and topographic features) of soil pH, EC, SOC, NH 4 - N, NO 3 -N and PO 4 -P in June 2005 between 20% to 10% slopes were decreased in 2008 after applying RWH techniques. Such improvement in soil status promoted vegetation growth and biomass in higher slope gra- dients. Soil water, species diversity and herbage biomass increased from USP to LSP, and RWH techniques had positive role in improving SOC, nutrients, vegetation population, evenness and growth at MSP. Despite of lowest SWC, regular rain and greater soil water usage enhanced green and dry herbage biomasses in 10% 20% and 20% slopes, compared with 10% slope. The highest diversity in CT treatment was related to herbage biomass, which was enhanced further by highest concentrations of SOC and PO 4 -P. Further, CT treatment was found to be the best treat- ment in minimizing biomass variance in different slopes. Conclusively, soil texture and topographic features controlled soil water and nutrients availability. Rainwater harvesting techniques increased soil water storage and nutrient retention and also enhanced vegetation status and biomass by minimizing the effects of hillslopes. Thus depending upon the site conditions, suitable RWH technique could be adopted to increase herb- age biomass while rehabilitating the degraded hills. 展开更多
关键词 herbage growth and biomass HILLSLOPES soil nutrients soil water dynamics vegetation diversity
下载PDF
Seismic Site Specific Study for Seismic Microzonation: A Way Forward for Risk Resiliency of Vital Infrastructure in Sikkim, India
2
作者 O. P. Mishra Priya Singh +7 位作者 b. ram Sasi Kiran Gera O. P. Singh K. K. Mukherjee G. K. Chakrabortty S. V. N. Chandrasekhar A. Selinraj S. K. Som 《International Journal of Geosciences》 2020年第3期125-144,共20页
Seismic Microzonation comprising study of site specific seismic Microtremor (H/V ratio) is deployed to generate seismological parameters (Peak Frequency, Peak Amplification, Site Vulnerability Index) that may help est... Seismic Microzonation comprising study of site specific seismic Microtremor (H/V ratio) is deployed to generate seismological parameters (Peak Frequency, Peak Amplification, Site Vulnerability Index) that may help estimate requisite factors for sound building design codes that can be used to construct risk resilient infrastructures. In this paper the site of Pakyong, Sikkim, India has been investigated by dividing it into three differed zones (Zone 1, Zone II, Zone III). The study area is associated with site amplification factor varying from 1.47 to 11.49 with corresponding frequency variations from 0.5 Hz - 12.5 Hz in which site vulnerability index found varied from 0.2 to 220.6. The anomalous subsurface formation with its high amplification corresponds to the centre of the Pakyong sites having conspicuous trend in NW-SE direction suggesting the existence of geological formations of Chlorite, Phyllite with intercalations of Quartzite beneath the centre of Pakyong site. The risk associated with vulnerability index for different zones maintains its variability as Zone I > Zone II > Zone III, indicating the low vulnerability index values are attributed to compact parts of the sub-surface materials with less amplifications whilst high vulnerability index of the site corresponds to relatively lower strength of the sub-surface materials and soft sediments underlying the Pakyong site which can be used for constructing risk resilient structure by enhancing the stiffness coefficient of the sub-surface by providing plausible engineering solutions for the purpose. 展开更多
关键词 SEISMIC SITE Specific SEISMIC MICROZONATION RISK Resilient H/V Ratio PEAK Amplification PEAK Frequency SITE Vulnerability Index Stiffness Coefficient
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部