The advanced communication system uses wireless broadband access technologies which provide high speed data connectivity to the subscribers. One of the most popular wireless access technology is Worldwide Interoperabi...The advanced communication system uses wireless broadband access technologies which provide high speed data connectivity to the subscribers. One of the most popular wireless access technology is Worldwide Interoperability for Microwave Access (WiMAX) and it is based on IEEE 802.16 standard. WiMAX used Orthogonal Frequency Division Multiplexing (OFDM) is an effective modulation technique to improve the timing synchronization. The performance of channel is affected due to the synchronization mismatching between the transmitter and receiver ends. To achieve the timing synchronization in IEEE 802.16 systems, the cross correlator is used to synchronize the received signal with the known signal. In this paper, two high speed correlators are proposed based on Q1.15 format, which is used to validate the timing synchronization problem. The proposed work has been mapped on XC6VCX75T FPGA and simulations are carried out on the Xilinx-ISIM platform. The implementation result shows that the power delay product reduction is 40.81%, and delay reduction is 39.59% over the conventional multiplier less correlators.展开更多
文摘The advanced communication system uses wireless broadband access technologies which provide high speed data connectivity to the subscribers. One of the most popular wireless access technology is Worldwide Interoperability for Microwave Access (WiMAX) and it is based on IEEE 802.16 standard. WiMAX used Orthogonal Frequency Division Multiplexing (OFDM) is an effective modulation technique to improve the timing synchronization. The performance of channel is affected due to the synchronization mismatching between the transmitter and receiver ends. To achieve the timing synchronization in IEEE 802.16 systems, the cross correlator is used to synchronize the received signal with the known signal. In this paper, two high speed correlators are proposed based on Q1.15 format, which is used to validate the timing synchronization problem. The proposed work has been mapped on XC6VCX75T FPGA and simulations are carried out on the Xilinx-ISIM platform. The implementation result shows that the power delay product reduction is 40.81%, and delay reduction is 39.59% over the conventional multiplier less correlators.