The purpose of this study was to analyze the migration pathways of contaminants from closed landfills and to estimate health risks based on soil characteristics. The health risks were estimated using Framework for Ris...The purpose of this study was to analyze the migration pathways of contaminants from closed landfills and to estimate health risks based on soil characteristics. The health risks were estimated using Framework for Risk Analysis Multimedia Environmental Systems (FRAMES) software. The sensitivity of human health risks and hazard indices due to vinyl chloride contamination in groundwater were performed in relation to soil characteristics such as Darcy velocity, thickness of soil layer, mass of contaminant present in the aquifer. Based on the analysis, Darcy velocity showed no effect on estimated risks. Since soil layer thickness had a significant effect on the estimated health risks, effects of different soil types on estimated risks were analyzed. The results showed that soils from the least appropriate to the most appropriate for risk management due to groundwater contamination were sand, sandy clay, sandy loam, loam and clay loam. FRAMES model was suitable for assessing the health risks due to vinyl chloride contamination in groundwater originating from a municipal solid waste landfill. The model showed the changes in both carcinogenic and non carcinogenic risks over time. The estimated health risks were directly correlated with the levels of vinyl chloride detected in groundwater.展开更多
文摘The purpose of this study was to analyze the migration pathways of contaminants from closed landfills and to estimate health risks based on soil characteristics. The health risks were estimated using Framework for Risk Analysis Multimedia Environmental Systems (FRAMES) software. The sensitivity of human health risks and hazard indices due to vinyl chloride contamination in groundwater were performed in relation to soil characteristics such as Darcy velocity, thickness of soil layer, mass of contaminant present in the aquifer. Based on the analysis, Darcy velocity showed no effect on estimated risks. Since soil layer thickness had a significant effect on the estimated health risks, effects of different soil types on estimated risks were analyzed. The results showed that soils from the least appropriate to the most appropriate for risk management due to groundwater contamination were sand, sandy clay, sandy loam, loam and clay loam. FRAMES model was suitable for assessing the health risks due to vinyl chloride contamination in groundwater originating from a municipal solid waste landfill. The model showed the changes in both carcinogenic and non carcinogenic risks over time. The estimated health risks were directly correlated with the levels of vinyl chloride detected in groundwater.