We consider a previously proposed general nonlinear poromechanical formulation, and we derive a linearized version of this model. For this linearized model, we obtain an existence result and we propose a complete disc...We consider a previously proposed general nonlinear poromechanical formulation, and we derive a linearized version of this model. For this linearized model, we obtain an existence result and we propose a complete discretization strategy – in time and space – with a special concern for issues associated with incompressible or nearly-incompressible behavior. We provide a detailed mathematical analysis of this strategy,the main result being an error estimate uniform with respect to the compressibility parameter. We then illustrate our approach with detailed simulation results and we numerically investigate the importance of the assumptions made in the analysis, including the fulfillment of specific inf-sup conditions.展开更多
文摘We consider a previously proposed general nonlinear poromechanical formulation, and we derive a linearized version of this model. For this linearized model, we obtain an existence result and we propose a complete discretization strategy – in time and space – with a special concern for issues associated with incompressible or nearly-incompressible behavior. We provide a detailed mathematical analysis of this strategy,the main result being an error estimate uniform with respect to the compressibility parameter. We then illustrate our approach with detailed simulation results and we numerically investigate the importance of the assumptions made in the analysis, including the fulfillment of specific inf-sup conditions.