Over the last decade,mobile Adhoc networks have expanded dramati-cally in popularity,and their impact on the communication sector on a variety of levels is enormous.Its uses have expanded in lockstep with its growth.D...Over the last decade,mobile Adhoc networks have expanded dramati-cally in popularity,and their impact on the communication sector on a variety of levels is enormous.Its uses have expanded in lockstep with its growth.Due to its instability in usage and the fact that numerous nodes communicate data concur-rently,adequate channel and forwarder selection is essential.In this proposed design for a Cognitive Radio Cognitive Network(CRCN),we gain the confidence of each forwarding node by contacting one-hop and second level nodes,obtaining reports from them,and selecting the forwarder appropriately with the use of an optimization technique.At that point,we concentrate our efforts on their channel,selection,and lastly,the transmission of data packets via the designated forwarder.The simulation work is validated in this section using the MATLAB program.Additionally,steps show how the node acts as a confident forwarder and shares the channel in a compatible method to communicate,allowing for more packet bits to be transmitted by conveniently picking the channel between them.We cal-culate the confidence of the node at the start of the network by combining the reliability report for thefirst hop and the reliability report for the secondary hop.We then refer to the same node as the confident node in order to operate as a forwarder.As a result,we witness an increase in the leftover energy in the output.The percentage of data packets delivered has also increased.展开更多
Owing to massive technological developments in Internet of Things(IoT)and cloud environment,cloud computing(CC)offers a highly flexible heterogeneous resource pool over the network,and clients could exploit various re...Owing to massive technological developments in Internet of Things(IoT)and cloud environment,cloud computing(CC)offers a highly flexible heterogeneous resource pool over the network,and clients could exploit various resources on demand.Since IoT-enabled models are restricted to resources and require crisp response,minimum latency,and maximum bandwidth,which are outside the capabilities.CC was handled as a resource-rich solution to aforementioned challenge.As high delay reduces the performance of the IoT enabled cloud platform,efficient utilization of task scheduling(TS)reduces the energy usage of the cloud infrastructure and increases the income of service provider via minimizing processing time of user job.Therefore,this article concentration on the design of an oppositional red fox optimization based task scheduling scheme(ORFOTSS)for IoT enabled cloud environment.The presented ORFO-TSS model resolves the problem of allocating resources from the IoT based cloud platform.It achieves the makespan by performing optimum TS procedures with various aspects of incoming task.The designing of ORFO-TSS method includes the idea of oppositional based learning(OBL)as to traditional RFO approach in enhancing their efficiency.A wide-ranging experimental analysis was applied on the CloudSim platform.The experimental outcome highlighted the efficacy of the ORFO-TSS technique over existing approaches.展开更多
Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is importa...Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is important for effective classification outcomes.Additionally,the recent advancements of deep learning(DL)models make it possible in several application areas.In addition,the performance of the DL models is mainly based on the hyperparameter setting which can be resolved by the design of metaheuristics.In this view,this article develops an automated red deer algorithm with deep learning enabled hyperspec-tral image(HSI)classification(RDADL-HIC)technique.The proposed RDADL-HIC technique aims to effectively determine the HSI images.In addition,the RDADL-HIC technique comprises a NASNetLarge model with Adagrad optimi-zer.Moreover,RDA with gated recurrent unit(GRU)approach is used for the identification and classification of HSIs.The design of Adagrad optimizer with RDA helps to optimally tune the hyperparameters of the NASNetLarge and GRU models respectively.The experimental results stated the supremacy of the RDADL-HIC model and the results are inspected interms of different measures.The comparison study of the RDADL-HIC model demonstrated the enhanced per-formance over its recent state of art approaches.展开更多
文摘Over the last decade,mobile Adhoc networks have expanded dramati-cally in popularity,and their impact on the communication sector on a variety of levels is enormous.Its uses have expanded in lockstep with its growth.Due to its instability in usage and the fact that numerous nodes communicate data concur-rently,adequate channel and forwarder selection is essential.In this proposed design for a Cognitive Radio Cognitive Network(CRCN),we gain the confidence of each forwarding node by contacting one-hop and second level nodes,obtaining reports from them,and selecting the forwarder appropriately with the use of an optimization technique.At that point,we concentrate our efforts on their channel,selection,and lastly,the transmission of data packets via the designated forwarder.The simulation work is validated in this section using the MATLAB program.Additionally,steps show how the node acts as a confident forwarder and shares the channel in a compatible method to communicate,allowing for more packet bits to be transmitted by conveniently picking the channel between them.We cal-culate the confidence of the node at the start of the network by combining the reliability report for thefirst hop and the reliability report for the secondary hop.We then refer to the same node as the confident node in order to operate as a forwarder.As a result,we witness an increase in the leftover energy in the output.The percentage of data packets delivered has also increased.
文摘Owing to massive technological developments in Internet of Things(IoT)and cloud environment,cloud computing(CC)offers a highly flexible heterogeneous resource pool over the network,and clients could exploit various resources on demand.Since IoT-enabled models are restricted to resources and require crisp response,minimum latency,and maximum bandwidth,which are outside the capabilities.CC was handled as a resource-rich solution to aforementioned challenge.As high delay reduces the performance of the IoT enabled cloud platform,efficient utilization of task scheduling(TS)reduces the energy usage of the cloud infrastructure and increases the income of service provider via minimizing processing time of user job.Therefore,this article concentration on the design of an oppositional red fox optimization based task scheduling scheme(ORFOTSS)for IoT enabled cloud environment.The presented ORFO-TSS model resolves the problem of allocating resources from the IoT based cloud platform.It achieves the makespan by performing optimum TS procedures with various aspects of incoming task.The designing of ORFO-TSS method includes the idea of oppositional based learning(OBL)as to traditional RFO approach in enhancing their efficiency.A wide-ranging experimental analysis was applied on the CloudSim platform.The experimental outcome highlighted the efficacy of the ORFO-TSS technique over existing approaches.
文摘Hyperspectral(HS)image classification is a hot research area due to challenging issues such as existence of high dimensionality,restricted training data,etc.Precise recognition of features from the HS images is important for effective classification outcomes.Additionally,the recent advancements of deep learning(DL)models make it possible in several application areas.In addition,the performance of the DL models is mainly based on the hyperparameter setting which can be resolved by the design of metaheuristics.In this view,this article develops an automated red deer algorithm with deep learning enabled hyperspec-tral image(HSI)classification(RDADL-HIC)technique.The proposed RDADL-HIC technique aims to effectively determine the HSI images.In addition,the RDADL-HIC technique comprises a NASNetLarge model with Adagrad optimi-zer.Moreover,RDA with gated recurrent unit(GRU)approach is used for the identification and classification of HSIs.The design of Adagrad optimizer with RDA helps to optimally tune the hyperparameters of the NASNetLarge and GRU models respectively.The experimental results stated the supremacy of the RDADL-HIC model and the results are inspected interms of different measures.The comparison study of the RDADL-HIC model demonstrated the enhanced per-formance over its recent state of art approaches.