期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Insensitivity of a turbulent laser-plasma dynamo to initial conditions
1
作者 A.F.A.Bott L.Chen +18 位作者 P.Tzeferacos C.A.J.Palmer A.R.Bell R.Bingham A.Birkel D.H.Froula J.Katz M.W.Kunz C.-K.Li H-S.Park R.Petrasso J.S.Ross b.reville D.Ryu F.H.Séguin T.G.White A.A.Schekochihin D.Q.Lamb G.Gregori 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2022年第4期50-64,共15页
It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous,asymmetric,weakly magnetized,laser-produced plasma jets can generate strong stochastic magnetic fi... It has recently been demonstrated experimentally that a turbulent plasma created by the collision of two inhomogeneous,asymmetric,weakly magnetized,laser-produced plasma jets can generate strong stochastic magnetic fields via the small-scale turbulent dynamo mechanism,provided the magnetic Reynolds number of the plasma is sufficiently large.In this paper,we compare such a plasma with one arising from two pre-magnetized plasma jets whose creation is identical save for the addition of a strong external magnetic field imposed by a pulsed magnetic field generator.We investigate the differences between the two turbulent systems using a Thomson-scattering diagnostic,x-ray selfemission imaging,and proton radiography.The Thomson-scattering spectra and x-ray images suggest that the external magnetic field has a limited effect on the plasma dynamics in the experiment.Although the external magnetic field induces collimation of the flows in the colliding plasma jets and although the initial strengths of the magnetic fields arising from the interaction between the colliding jets are significantly larger as a result of the external field,the energies and morphologies of the stochastic magnetic fields post-amplification are indistinguishable.We conclude that,for turbulent laser-plasmas with supercritical magnetic Reynolds numbers,the dynamo-amplified magnetic fields are determined by the turbulent dynamics rather than the seed fields or modest changes in the initial flow dynamics of the plasma,a finding consistent with theoretical expectations and simulations of turbulent dynamos. 展开更多
关键词 TURBULENT INITIAL STOCHASTIC
下载PDF
Maser radiation from collisionless shocks: application to astrophysical jets
2
作者 D.C.Speirs K.Ronald +27 位作者 A.D.R.Phelps M.E.Koepke R.A.Cairns A.Rigby F.Cruz R.M.G.M.Trines R.Bamford B.J.Kellett B.Albertazzi J.E.Cross F.Fraschetti P.Graham P.M.Kozlowski Y.Kuramitsu F.Miniati T.Morita M.Oliver b.reville Y.Sakawa S.Sarkar C.Spindloe M.Koenig L.O.Silva D.Q.Lamb P.Tzeferacos S.Lebedev G.Gregori R.Bingham 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2019年第1期120-127,共8页
This paper describes a model of electron energization and cyclotron-maser emission applicable to astrophysical magnetized collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [Astrophys. J. 62... This paper describes a model of electron energization and cyclotron-maser emission applicable to astrophysical magnetized collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [Astrophys. J. 625, 51(2005)] who argued that the cyclotron-maser instability occurs in localized magnetized collisionless shocks such as those expected in blazar jets. We report on recent research carried out to investigate electron acceleration at collisionless shocks and maser radiation associated with the accelerated electrons. We describe how electrons accelerated by lower-hybrid waves at collisionless shocks generate cyclotron-maser radiation when the accelerated electrons move into regions of stronger magnetic fields. The electrons are accelerated along the magnetic field and magnetically compressed leading to the formation of an electron velocity distribution having a horseshoe shape due to conservation of the electron magnetic moment. Under certain conditions the horseshoe electron velocity distribution function is unstable to the cyclotron-maser instability [Bingham and Cairns, Phys. Plasmas 7, 3089(2000); Melrose, Rev. Mod. Plasma Phys. 1, 5(2017)]. 展开更多
关键词 laboratory ASTROPHYSICS plasma PHYSICS particle ACCELERATION plasma-wave INSTABILITIES
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部