期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Casson Nanofluid Flow with Cattaneo-Christov Heat Flux and Chemical Reaction Past a Stretching Sheet in the Presence of Porous Medium
1
作者 Mahzad Ahmed Raja Mussadaq Yousaf +1 位作者 Ali Hassan b.shankar goud 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1261-1276,共16页
In the current work,inclined magnetic field,thermal radiation,and the Cattaneo-Christov heat flux are taken into account as we analyze the impact of chemical reaction on magneto-hydrodynamic Casson nanofluid flow on a... In the current work,inclined magnetic field,thermal radiation,and the Cattaneo-Christov heat flux are taken into account as we analyze the impact of chemical reaction on magneto-hydrodynamic Casson nanofluid flow on a stretching sheet.Modified Buongiorno’s nanofluid model has been used to model the flow governing equations.The stretching surface is embedded in a porousmedium.By using similarity transformations,the nonlinear partial differential equations are transformed into a set of dimensionless ordinary differential equations.The numerical solution of transformed dimensionless equations is achieved by applying the shooting procedure together with Rung-Kutta 4th-order method employing MATLAB.The impact of significant parameters on the velocity profile f(ζ),temperature distributionθ(ζ),concentration profileϕ(ζ),skin friction coefficient(Cf),Nusselt number(Nux)and Sherwood number(Shx)are analyzed and displayed in graphical and tabular formats.With an increase in Casson fluid 0.5<β<2,the motion of the Casson fluid decelerates whereas the temperature profile increases.As the thermal relation factor expands 0.1<γ1<0.4,the temperature reduces,and consequently thermal boundary layer shrinks.Additionally,by raising the level of thermal radiation 1<Rd<7,the temperature profile significantly improves,and an abrupt expansion has also been observed in the associated thermal boundary with raise thermal radiation strength.It was observed that higher permeability 0<K<4 hinders the acceleration of Casson fluid.Higher Brownian motion levels 0.2<Nb<0.6 correspond to lower levels of the Casson fluid concentration profile.Moreover,it is observed that chemical reaction 0.2<γ2<0.5 has an inverse relation with the concentration level of Casson fluid.The current model’s significant uses include heat energy enhancement,petroleum recovery,energy devices,food manufacturing processes,and cooling device adjustment,among others.Furthermore,present outcomes have been found in great agreementwith already publishedwork. 展开更多
关键词 Nanofluid Cattaneo-Christov heat flux stretching sheet porous medium rosseland radiation and first order chemical reaction
下载PDF
Mathematical Study of HD Micropolar Fluid Flow with Radiation and Dissipative Impacts over a Permeable Stretching Sheet:Slip Effects Phenomena
2
作者 Pudhari Srilatha Ahmed M.Hassan +1 位作者 b.shankar goud E.Ranjit Kumar 《Frontiers in Heat and Mass Transfer》 EI 2023年第1期539-562,共24页
The purpose of this research is to investigate the influence that slip boundary conditions have on the rate of heat and mass transfer by examining the behavior of micropolar MHD flow across a porous stretching sheet.I... The purpose of this research is to investigate the influence that slip boundary conditions have on the rate of heat and mass transfer by examining the behavior of micropolar MHD flow across a porous stretching sheet.In addition to this,the impacts of thermal radiation and viscous dissipation are taken into account.With the use of various computing strategies,numerical results have been produced.Similarity transformation was utilized in order to convert the partial differential equations(PDEs)that regulated energy,rotational momentum,concentration,and momentum into ordinary differential equations(ODEs).As compared to earlier published research,MATLAB inbuilt solver solution shows an extremely good correlation in exceptional instances.In exceptional instances,the present MATLAB inbuilt solver solution has a very excellent connection with the findings of the previously published investigations.A variety of flow field factors impact the Nusselt number,the wall couple shear stress,the friction factor,Sherwood numbers the dimensionless distributions discussed in detail.When the Eckert number rises,the temperature rises,and the Schmidt number falls,the concentration falls.Velocity increases with increases in the material factor but drops with increases in the magnetic parameter and the surface condition factor. 展开更多
关键词 Micropolar radiation bvp4c MHD suction/injection
下载PDF
Finite Difference Approach on Magnetohydrodynamic Stratified Fluid Flow Past Vertically Accelerated Plate in Porous Media with Viscous Dissipation
3
作者 M.Sridevi b.shankar goud +1 位作者 Ali Hassan D.Mahendar 《Frontiers in Heat and Mass Transfer》 EI 2024年第3期939-953,共15页
This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation.It is assumed that the medium under study... This study intends to evaluate the influence of temperature stratification on an unsteady fluid flow past an accelerated vertical plate in the existence of viscous dissipation.It is assumed that the medium under study is a grey,non-scattered fluid that both fascinates and transmits radiation.The leading equations are discretized using the finite differencemethod(FDM).UsingMATLABsoftware,the impacts of flowfactors on flowfields are revealed with particular examples in graphs and a table.In this regard,FDM results show that the velocity and temperature gradients increase with an increase of Eckert number.Furthermore,tables of the data indicate the influence of flow-contributing factors on the skin friction coefficients,and Nusselt numbers.When comparing constant and variable flow regimes,the constant flow regime has greater values for the nondimensional skin friction coefficient.This research is both innovative and fascinating since it has the potential to expand our understanding of fluid dynamics and to improve many different sectors. 展开更多
关键词 MHD FDM stratified fluid porous media unsteady flow
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部