自新型冠状病毒疫情暴发以来,全球已有26个国家受到影响,截止2020年2月16日,确诊人数累计超过6.8万,世界各国纷纷开展相关研究并发表论文。本文拟及时梳理研究信息,辅助不同岗位工作者在实践或研究中的决策。用新型冠状病毒肺炎(简称新...自新型冠状病毒疫情暴发以来,全球已有26个国家受到影响,截止2020年2月16日,确诊人数累计超过6.8万,世界各国纷纷开展相关研究并发表论文。本文拟及时梳理研究信息,辅助不同岗位工作者在实践或研究中的决策。用新型冠状病毒肺炎(简称新冠肺炎)相关的中英文检索词在Pubmed、Web of Science、CNKI、万方数据库、维普数据库(VIP database)中进行检索并补充相关专栏文献,对纳入研究的基本信息进行分布描述并对各研究主题的文献进行梳理和总结。最终纳入301篇文献,自1月中旬论文发表呈上升趋势,2月6日单日发表达50篇;发表相关论文最多的国家及地区分别是中国内地、美国、英国等;Lancet及其子刊发表文章数量最多,The New England Journal of Medicine(NEJM)、The Journal of the American Medical Association(JAMA)、Nature等期刊也纷纷发表相关论文。本文就流行病学、临床特征及诊疗、基础研究、儿童孕妇、心理防护、疫情防控管理等研究方向对新冠肺炎相关研究进行了梳理和总结。展开更多
Background Cockayne syndrome (CS) is a rare human genetic disorder characterized by increased UV sensitivity, developmental abnormalities and premature aging. Cells isolated from individuals with CS have a defect in...Background Cockayne syndrome (CS) is a rare human genetic disorder characterized by increased UV sensitivity, developmental abnormalities and premature aging. Cells isolated from individuals with CS have a defect in transcription-coupled DNA repair. Despite the repair defect, there is no any increased risk of spontaneous or UV-induced cancer for CS individuals. The strategy of RNA interfering was used here to explore the potential radiosensitizing and anticancer activity of targeting CS group B (CSB) gene. Methods The vectors encoding CSB-specific siRNAs were constructed by inserting duplex siRNA encoding oligonucleotides into the plasmid P^silencer TM 3.1. The cell lines expressing the CSB-siRNA were generated from HeLa cells transfected with the above vectors. Colony-forming ability was used to assay cell survival. Cell cycle was analyzed by FACScan flow cytometry. The apoptosis was measured by detecting the accumulation of sub-G1 population as well as by fluorescence staining assay. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to semi-quantify mRNA expression. Protein level was detected by Western blotting analysis. Results Two constructs encoding CSB-specific siRNA were generated, both of them resulted in remarkable suppression on CSB expression in HeLa cells, and led to an increased sensitivity to T-ray and UV light. siRNA-mediated silencing of CSB decreased cell proliferation rate, increased spontaneous apoptosis as well as the occurrence of UV- or cisplatin-induced apoptosis by 2 to 3.5 fold. A significant S phase blockage and a remarkable reduction of G1 population were induced in control HeLa cells at 18 hours after being exposed to 10 J/m^2 of UV light. The S phase blockage was also observed in UV-irradiated CSB-siRNA transfected HeLa cells, but the extent of increased S phase population was lower than that in the UV-irradiated control cells. No or a relative weak reduction on G1 phase population was observed in UV-irradiated CSB-siRNA transfected HeLa cells. In addition, siRNA-mediated silencing of CSB promoted the elimination of G2/M phase cells after UV light radiation. Conclusions siRNA-mediated silencing of CSB causes cells to proliferate more slowly, sensitize cells to genotoxicants, and modify UV radiation-induced cell cycle changes, siRNA-mediated inactivation of CSB could be an attractive strategy for ameliorating cancer therapy, which can be fulfilled via the combination of gene therapy and sensitization of radiotherapy or chemotherapy.展开更多
文摘自新型冠状病毒疫情暴发以来,全球已有26个国家受到影响,截止2020年2月16日,确诊人数累计超过6.8万,世界各国纷纷开展相关研究并发表论文。本文拟及时梳理研究信息,辅助不同岗位工作者在实践或研究中的决策。用新型冠状病毒肺炎(简称新冠肺炎)相关的中英文检索词在Pubmed、Web of Science、CNKI、万方数据库、维普数据库(VIP database)中进行检索并补充相关专栏文献,对纳入研究的基本信息进行分布描述并对各研究主题的文献进行梳理和总结。最终纳入301篇文献,自1月中旬论文发表呈上升趋势,2月6日单日发表达50篇;发表相关论文最多的国家及地区分别是中国内地、美国、英国等;Lancet及其子刊发表文章数量最多,The New England Journal of Medicine(NEJM)、The Journal of the American Medical Association(JAMA)、Nature等期刊也纷纷发表相关论文。本文就流行病学、临床特征及诊疗、基础研究、儿童孕妇、心理防护、疫情防控管理等研究方向对新冠肺炎相关研究进行了梳理和总结。
基金This work was supported by the grants from Chinese National High Technology "863" Programs (No. 2004AA221160) and National Natural Science Foundation of China (No. 30270423).
文摘Background Cockayne syndrome (CS) is a rare human genetic disorder characterized by increased UV sensitivity, developmental abnormalities and premature aging. Cells isolated from individuals with CS have a defect in transcription-coupled DNA repair. Despite the repair defect, there is no any increased risk of spontaneous or UV-induced cancer for CS individuals. The strategy of RNA interfering was used here to explore the potential radiosensitizing and anticancer activity of targeting CS group B (CSB) gene. Methods The vectors encoding CSB-specific siRNAs were constructed by inserting duplex siRNA encoding oligonucleotides into the plasmid P^silencer TM 3.1. The cell lines expressing the CSB-siRNA were generated from HeLa cells transfected with the above vectors. Colony-forming ability was used to assay cell survival. Cell cycle was analyzed by FACScan flow cytometry. The apoptosis was measured by detecting the accumulation of sub-G1 population as well as by fluorescence staining assay. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to semi-quantify mRNA expression. Protein level was detected by Western blotting analysis. Results Two constructs encoding CSB-specific siRNA were generated, both of them resulted in remarkable suppression on CSB expression in HeLa cells, and led to an increased sensitivity to T-ray and UV light. siRNA-mediated silencing of CSB decreased cell proliferation rate, increased spontaneous apoptosis as well as the occurrence of UV- or cisplatin-induced apoptosis by 2 to 3.5 fold. A significant S phase blockage and a remarkable reduction of G1 population were induced in control HeLa cells at 18 hours after being exposed to 10 J/m^2 of UV light. The S phase blockage was also observed in UV-irradiated CSB-siRNA transfected HeLa cells, but the extent of increased S phase population was lower than that in the UV-irradiated control cells. No or a relative weak reduction on G1 phase population was observed in UV-irradiated CSB-siRNA transfected HeLa cells. In addition, siRNA-mediated silencing of CSB promoted the elimination of G2/M phase cells after UV light radiation. Conclusions siRNA-mediated silencing of CSB causes cells to proliferate more slowly, sensitize cells to genotoxicants, and modify UV radiation-induced cell cycle changes, siRNA-mediated inactivation of CSB could be an attractive strategy for ameliorating cancer therapy, which can be fulfilled via the combination of gene therapy and sensitization of radiotherapy or chemotherapy.