A virtual interventional surgical system with force feedback is designed to provide practice before complicated interventional operation and assistance during operation.The collision detection,vessel deformation calcu...A virtual interventional surgical system with force feedback is designed to provide practice before complicated interventional operation and assistance during operation.The collision detection,vessel deformation calculating and virtual force computing of the virtual system are implemented by using skeleton spring model as the physical modeling foundation,which is based on the mass spring model and easy to construct with high computing efficiency.In order to increase the real time performance,the central plane of the vessel model is extracted and then simplified to complete the skeleton filling.The initiative bending kinematics of the virtual catheter is analyzed so as to provide the virtual system with higher fidelity.The experimental results show that the virtual system can well simulate the vessel deformation and force feedback within an interventional surgery,which gives the virtual system better immersion.展开更多
基金supported by National High Technology Development Program of China(No. 51575256)
文摘A virtual interventional surgical system with force feedback is designed to provide practice before complicated interventional operation and assistance during operation.The collision detection,vessel deformation calculating and virtual force computing of the virtual system are implemented by using skeleton spring model as the physical modeling foundation,which is based on the mass spring model and easy to construct with high computing efficiency.In order to increase the real time performance,the central plane of the vessel model is extracted and then simplified to complete the skeleton filling.The initiative bending kinematics of the virtual catheter is analyzed so as to provide the virtual system with higher fidelity.The experimental results show that the virtual system can well simulate the vessel deformation and force feedback within an interventional surgery,which gives the virtual system better immersion.