期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Conophylline Promotes the Proliferation of Immortalized Mesenchymal Stem Cells Derived from Fetal Porcine Pancreas (iPMSCs) 被引量:3
1
作者 ZHANG Hui-ru LI Dan +7 位作者 CAO Hui Lü Xiao CHU Yuan-kui bai yao-fu JIN Ya-ping PENG Sha DOU Zhong-ying HUA Jin-lian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第4期678-686,共9页
Conophylline, is a bis (indole) alkaloid consisting of two pentacyclic aspidosperma skeletons, isolated from Tabernaemontana divaricata, which has been found to induce β-cell differentiation in rat pancreatic acina... Conophylline, is a bis (indole) alkaloid consisting of two pentacyclic aspidosperma skeletons, isolated from Tabernaemontana divaricata, which has been found to induce β-cell differentiation in rat pancreatic acinar carcinoma cells and in cultured rat pancreatic tissue. However, the precise role of conophylline in the growth and survival of immortalized pancreatic mesenchymal stem cells (iPMSCs) derived from fetal porcine pancreas were not understood at present. To determine whether this molecule is involved in controlling the proliferation of iPMSCs, we examined the effects of conophylline on iPMSCs. We found that conophylline can robustly stimulate iPMSCs proliferation, even promote their potential differentiation into islet-like clusters analyzed by cell counting, morphology, RT-PCR and real-time PCR, Western blotting, glucose-stimulated insulin release and insulin content analysis. The effects of conophylline were inhibited by LY294002, which is the inhibitor of the PI3K pathway. These results suggest that conophylline plays a key role in the regulation of cell mass proliferation, maintenance of the undifferentiated state of iPMSCs and also promotes iPMSCs differentiated into insulin-producing cells. 展开更多
关键词 immortalized pancreatic mesenchymal stem cells (iPMSCs) conophylline PI3K insulin-producing cells
下载PDF
A Three-Dimensional (3D) Environment to Maintain the Integrity of Mouse Testicular Can Cause the Occurrence of Meiosis
2
作者 CHU Zhi-li LIU Chao +3 位作者 bai yao-fu ZHU Hai-jing HU Yue HUA Jin-lian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第8期1481-1488,共8页
Adhesions between different cells and extracellular matrix have been studied extensively in vitro, but little is known about their functions in testicular tissue counterparts. Spermatogonia and their companion somatic... Adhesions between different cells and extracellular matrix have been studied extensively in vitro, but little is known about their functions in testicular tissue counterparts. Spermatogonia and their companion somatic cells maintain a close association throughout spermatogenesis and this association is necessary for normal spermatogenesis. In order to keep the relative integrity of the testicular tissues, and to detect the development in vitro, culture testicular tissues in a three- dimensional (3D) agarose matrix was examined. Testicular tissues isolated from 6.5 d postpartum (dpp) mouse were cultured on the top of the matrix for 26 d with a medium height up to 4/5 of the 3D agarose matrix. The results showed that in this 3D culture environment, each type of testicular cells kept the same structure, localization and function as in vivo and might be more biologically relevant to living organisms. After culture, germ cell marker VASA and meiosis markers DAZL and SCP3 showed typical positive analysed by immunofluorescence staining and RT-PCR. It demonstrated that this 3D culture system was able to maintain the number of germ cells and promote the meiosis initiation of male germ cells. 展开更多
关键词 three-dimensional culture (3D) MEIOSIS organ culture MOUSE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部