In this work, the excess water-stagnation issue in the high current region in direct methanol fuel cells(DMFCs) is resolved by using atomic precision modulated nitrogen-crafted graphene(NG) in the cathode microporous ...In this work, the excess water-stagnation issue in the high current region in direct methanol fuel cells(DMFCs) is resolved by using atomic precision modulated nitrogen-crafted graphene(NG) in the cathode microporous layer by utilizing simplistic,industrial-expansive and ecological strategy. Few-layer 2D-graphene(~2–5 nm thickness) is prepared by bath sonication approach from abundant feedstock-graphite and is treated with nitric acid to yield 1.8 wt.% uniformly dispersed nitrogen containing NG. Specifically, 1:4 weight ratio NG:carbon-black(CB) hybrid architecture, displays 0.252 V in 370 mA cm^(-2) with the peak power density of 93.4 mW cm^(-2), improving cell power density by 45.6% compared with standard one at 60℃ and 1 mol/L methanol/oxygen conditions at ultra-low catalyst loadings and displaying exceptional stability. Atomic insights into NG reveal that interplay between bonding configurations, altered hydrophobic/hydrophilic porosity of graphene(10.6% less wettability from contact angle and 13.1% high electrode porosity measurements) contribute to the better mass-transport-porogenic effect(16.3% high oxygen-permeability), mildly affecting the electron pathway(6.5% reduced in-plane electrical conductivity),overall significantly improving cell performance. Altogether, this work delivers multiple advantages, i.e., the usage of material from facile, sustainable and cost-effective routes, while improving DMFC performance with potential industrial promise.展开更多
基金supported by China Postdoctoral Science Foundation(Grant No.2019M661749)Six-Talent-Peaks Project in Jiangsu Province(Grant No.2016-XNY-015)+1 种基金the High-Tech Key Laboratory of Zhenjiang City(Grant No.SS2018002)Priority Academic Program Development(PAPD) of Jiangsu Higher Education Institutions。
文摘In this work, the excess water-stagnation issue in the high current region in direct methanol fuel cells(DMFCs) is resolved by using atomic precision modulated nitrogen-crafted graphene(NG) in the cathode microporous layer by utilizing simplistic,industrial-expansive and ecological strategy. Few-layer 2D-graphene(~2–5 nm thickness) is prepared by bath sonication approach from abundant feedstock-graphite and is treated with nitric acid to yield 1.8 wt.% uniformly dispersed nitrogen containing NG. Specifically, 1:4 weight ratio NG:carbon-black(CB) hybrid architecture, displays 0.252 V in 370 mA cm^(-2) with the peak power density of 93.4 mW cm^(-2), improving cell power density by 45.6% compared with standard one at 60℃ and 1 mol/L methanol/oxygen conditions at ultra-low catalyst loadings and displaying exceptional stability. Atomic insights into NG reveal that interplay between bonding configurations, altered hydrophobic/hydrophilic porosity of graphene(10.6% less wettability from contact angle and 13.1% high electrode porosity measurements) contribute to the better mass-transport-porogenic effect(16.3% high oxygen-permeability), mildly affecting the electron pathway(6.5% reduced in-plane electrical conductivity),overall significantly improving cell performance. Altogether, this work delivers multiple advantages, i.e., the usage of material from facile, sustainable and cost-effective routes, while improving DMFC performance with potential industrial promise.