The dynamic pressure distribution on a rectangular plate attached to a rigid wall and supporting an infinitely large extent of fluid subjected to a harmonic ground excitation is evaluated in the time domain. Governing...The dynamic pressure distribution on a rectangular plate attached to a rigid wall and supporting an infinitely large extent of fluid subjected to a harmonic ground excitation is evaluated in the time domain. Governing equations for the fluid domain are set considering the compressibility of the fluid with negligibly small change in density and a linearized free surface. A far boundary condition for the three-dimensional fluid domain is developed so that the far boundary is truncated at a closer proximity to the structure. The coupled problem is solved independently for the structure and the fluid domain by transferring the acceleration of the plate to the fluid and pressure of the fluid to the plate in sequence. Helmholtz equation for the three-dimensional fluid domain and Mindlin's theory for the two-dimensional plate are used for the solution of the interacting domains. Finite element technique is adopted for the solution of this problem with pressure as nodal variable for the fluid domain and displacement for the plate. The time dependent equations are solved in each of the interacting domain using Newmark-fl method. The effectiveness of the technique is demonstrated and the influences of surface wave, exciting frequency and flexibility of the plate on dynamic pressure are investigated.展开更多
文摘The dynamic pressure distribution on a rectangular plate attached to a rigid wall and supporting an infinitely large extent of fluid subjected to a harmonic ground excitation is evaluated in the time domain. Governing equations for the fluid domain are set considering the compressibility of the fluid with negligibly small change in density and a linearized free surface. A far boundary condition for the three-dimensional fluid domain is developed so that the far boundary is truncated at a closer proximity to the structure. The coupled problem is solved independently for the structure and the fluid domain by transferring the acceleration of the plate to the fluid and pressure of the fluid to the plate in sequence. Helmholtz equation for the three-dimensional fluid domain and Mindlin's theory for the two-dimensional plate are used for the solution of the interacting domains. Finite element technique is adopted for the solution of this problem with pressure as nodal variable for the fluid domain and displacement for the plate. The time dependent equations are solved in each of the interacting domain using Newmark-fl method. The effectiveness of the technique is demonstrated and the influences of surface wave, exciting frequency and flexibility of the plate on dynamic pressure are investigated.