In this paper, a Complex Wavelet Packet (CWP-MC-CDMA) system uplink model is proposed, based Multi-Carrier Code Division Multiple Access based on the analysis of the principle of MC-CDMA and the use of the optimized...In this paper, a Complex Wavelet Packet (CWP-MC-CDMA) system uplink model is proposed, based Multi-Carrier Code Division Multiple Access based on the analysis of the principle of MC-CDMA and the use of the optimized complex wavelet packet. Considering that the base station can adopt multiple re- ceiver antennas in the uplink, we employ the Space Diversity Combining (SDC) technique to improve the sys- tem pertbrmance via multiple antennas. The uplink performance of proposed CWP-MC-CDMA system with SDC technique is investigated over Rayleigh lading channel, and corresponding bit error rate analysis is given in detail. The system can avoid the decrease of spectrum efficiency of conventional MC-CDMA due to inserting cyclic prefix. Theoretical analysis and simulation result show that the application of SDC technique can improve the CWP-MC-CDMA system ability to combat spatial lading and various interferences effectively. Moreover, the proposed system based on SDC technique has superior Bit Error Rate (BER) performance over the Discrete Fourier Transform (DFT) and SDC based MC-CDMA system and the real wavelet packet and SDC based MC-CDMA system.展开更多
Space-Time Block (STB) code has been an effective transmit diversity technique for combating fading due to its orthogonal design, simple decoding and high diversity gains. In this paper, a unit-rate complex orthogonal...Space-Time Block (STB) code has been an effective transmit diversity technique for combating fading due to its orthogonal design, simple decoding and high diversity gains. In this paper, a unit-rate complex orthogonal STB code for multiple antennas in Time Division Duplex (TDD) mode is proposed. Meanwhile, Turbo Coding (TC) is employed to improve the performance of proposed STB code further by utilizing its good ability to combat the burst error of fading channel. Compared with full-diversity multiple antennas STB codes, the proposed code can implement unit rate and partial diversity; and it has much smaller computational complexity under the same system throughput. Moreover, the application of TC can effectively make up for the performance loss due to partial diversity. Simulation results show that on the condition of same system throughput and concatenation of TC, the proposed code has lower Bit Error Rate (BER) than those full-diversity codes.展开更多
The Ultra-WideBand Orthogonal Frequency Division Multiplexing (UWB-OFDM) approach is a promising physical-layer technique for short-range, high data-rate wireless networks. As the occupied band-width increases, howeve...The Ultra-WideBand Orthogonal Frequency Division Multiplexing (UWB-OFDM) approach is a promising physical-layer technique for short-range, high data-rate wireless networks. As the occupied band-width increases, however, its implementation becomes more and more difficult. In order to make it easier to achieve a UWB-OFDM system, a complexity-reduced Frequency diversity (F-diversity) scheme, Fre-quency-Time Block Code (FTBC), is presented in this paper. The FTBC halves the sampling rate required by other F-diversity techniques so as to cut down the cost of UWB-OFDM systems with F-diversity to a certain extent.展开更多
In Direct Sequence Code Division Multiple Access (DS-CDMA) systems,the chip wave-form affects the implementation,system bandwidth,envelope uniformity,eye pattern and Multiple user Access Interference (MAI). In this pa...In Direct Sequence Code Division Multiple Access (DS-CDMA) systems,the chip wave-form affects the implementation,system bandwidth,envelope uniformity,eye pattern and Multiple user Access Interference (MAI). In this paper,based on an elementary density function of a second order polynomial,a class of second order continuity pulses is proposed. From this class of pulses,we can find some members having faster decaying rate,bigger eye opening,more uniform envelope and stronger anti-MAI capability than the Nyquist waveform. The normalized-bandwidth-pulse-shape-factor product,the decaying rate of the tail of the time waveform,the opening of the eye diagram,and the envelope uniformity of the second order continuity pulses are addressed in the paper that provide the basic information for the selection of the chip pulse for CDMA systems.展开更多
In this paper, by introducing orthogonal space-time coding scheme, the multiuser CDMA systems with different space time codes are given, and corresponding system performance is investigated over Rayleigh fading channe...In this paper, by introducing orthogonal space-time coding scheme, the multiuser CDMA systems with different space time codes are given, and corresponding system performance is investigated over Rayleigh fading channel. A low-complexity multiuser receiver scheme is developed for space-time coded CDMA systems. The scheme can make full use of the complex orthogonality of space-time coding to simplify the high decoding complexity of the existing scheme. Compared to the existing scheme with exponential decoding complexity, it has linear decoding complexity. Based on the performance analysis and mathematical calculation, average bit error rate (BER) of the system is derived in detail, and tight closed-form approximation expressions of BER are attained. Simulation results on average BER are in agreement with the theory analysis. The results show that the proposed scheme can achieve almost the same performance as the existing scheme. Moreover, on the condition of same system throughput and concatenation of channel code, the given full-rate space-time coded CDMA system has lower BER than the full-diversity space-time coded CDMA systems.展开更多
基金Supported by China Postdoctoral Science Foundation, and Science Foundation of Jiangsu Province (BK2003089).
文摘In this paper, a Complex Wavelet Packet (CWP-MC-CDMA) system uplink model is proposed, based Multi-Carrier Code Division Multiple Access based on the analysis of the principle of MC-CDMA and the use of the optimized complex wavelet packet. Considering that the base station can adopt multiple re- ceiver antennas in the uplink, we employ the Space Diversity Combining (SDC) technique to improve the sys- tem pertbrmance via multiple antennas. The uplink performance of proposed CWP-MC-CDMA system with SDC technique is investigated over Rayleigh lading channel, and corresponding bit error rate analysis is given in detail. The system can avoid the decrease of spectrum efficiency of conventional MC-CDMA due to inserting cyclic prefix. Theoretical analysis and simulation result show that the application of SDC technique can improve the CWP-MC-CDMA system ability to combat spatial lading and various interferences effectively. Moreover, the proposed system based on SDC technique has superior Bit Error Rate (BER) performance over the Discrete Fourier Transform (DFT) and SDC based MC-CDMA system and the real wavelet packet and SDC based MC-CDMA system.
基金Supported by Chinese 863 project (No.2001 AA 123042).
文摘Space-Time Block (STB) code has been an effective transmit diversity technique for combating fading due to its orthogonal design, simple decoding and high diversity gains. In this paper, a unit-rate complex orthogonal STB code for multiple antennas in Time Division Duplex (TDD) mode is proposed. Meanwhile, Turbo Coding (TC) is employed to improve the performance of proposed STB code further by utilizing its good ability to combat the burst error of fading channel. Compared with full-diversity multiple antennas STB codes, the proposed code can implement unit rate and partial diversity; and it has much smaller computational complexity under the same system throughput. Moreover, the application of TC can effectively make up for the performance loss due to partial diversity. Simulation results show that on the condition of same system throughput and concatenation of TC, the proposed code has lower Bit Error Rate (BER) than those full-diversity codes.
文摘The Ultra-WideBand Orthogonal Frequency Division Multiplexing (UWB-OFDM) approach is a promising physical-layer technique for short-range, high data-rate wireless networks. As the occupied band-width increases, however, its implementation becomes more and more difficult. In order to make it easier to achieve a UWB-OFDM system, a complexity-reduced Frequency diversity (F-diversity) scheme, Fre-quency-Time Block Code (FTBC), is presented in this paper. The FTBC halves the sampling rate required by other F-diversity techniques so as to cut down the cost of UWB-OFDM systems with F-diversity to a certain extent.
基金Supported by University Natural Science Research Pro-ject of Jiangsu (No.03KJB510088)National Natural Science Foundation of China (No.60572130).
文摘In Direct Sequence Code Division Multiple Access (DS-CDMA) systems,the chip wave-form affects the implementation,system bandwidth,envelope uniformity,eye pattern and Multiple user Access Interference (MAI). In this paper,based on an elementary density function of a second order polynomial,a class of second order continuity pulses is proposed. From this class of pulses,we can find some members having faster decaying rate,bigger eye opening,more uniform envelope and stronger anti-MAI capability than the Nyquist waveform. The normalized-bandwidth-pulse-shape-factor product,the decaying rate of the tail of the time waveform,the opening of the eye diagram,and the envelope uniformity of the second order continuity pulses are addressed in the paper that provide the basic information for the selection of the chip pulse for CDMA systems.
基金Supported by the China Postdoctoral Science Foundation (Grant No. 2005038242)the open research fund of National Mobile Communications Research Laboratory, Southeast University (Grant No. N200904)the startup fund of Nanjing University of Aeronautics and Astronautics(Grant No. S0855-041)
文摘In this paper, by introducing orthogonal space-time coding scheme, the multiuser CDMA systems with different space time codes are given, and corresponding system performance is investigated over Rayleigh fading channel. A low-complexity multiuser receiver scheme is developed for space-time coded CDMA systems. The scheme can make full use of the complex orthogonality of space-time coding to simplify the high decoding complexity of the existing scheme. Compared to the existing scheme with exponential decoding complexity, it has linear decoding complexity. Based on the performance analysis and mathematical calculation, average bit error rate (BER) of the system is derived in detail, and tight closed-form approximation expressions of BER are attained. Simulation results on average BER are in agreement with the theory analysis. The results show that the proposed scheme can achieve almost the same performance as the existing scheme. Moreover, on the condition of same system throughput and concatenation of channel code, the given full-rate space-time coded CDMA system has lower BER than the full-diversity space-time coded CDMA systems.