Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic opt/mization objective by using finite-time thermodynamics. Based on an irreversible AHP with infin...Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic opt/mization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD opti-mization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influenc-ing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system.展开更多
文摘电加热固体储能供热装置通过将低谷电转化为热能,可以实现电力调峰,对减少环境污染、提高能源利用率具有十分重要的意义.结合工程实际中的蓄热砖结构,基于流固耦合换热原理,对不同孔道结构固体蓄热单元的蓄/释热过程进行仿真研究,分析和比较了蓄热砖孔道结构和进口空气流速等参数对蓄热单元蓄/释热性能的影响.模拟结果发现:与不加矩形孔道的蓄热单元相比,在蓄热阶段,添加矩形孔道的蓄热单元的平均温度和温升速率降低,与空气的换热量增加.在释热阶段,添加矩形孔道的蓄热单元的温降速率增加,与空气的换热量增加,热量释放更充分;在蓄/释热过程中,随着矩形孔道宽高比增加,蓄热单元的温度分布更加均匀;在释热过程中,进口空气流速和矩形孔道宽高比越小,释热速度越慢,所需释热时间越长.当进口空气流速为1.5 m/s时,模型1释热33.5 h,模型4释热18.2 h.
基金supported by National Natural Science Foundation of China(NSFC)under the contracts No.51776008 and No.51376012
文摘Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic opt/mization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD opti-mization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influenc-ing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system.