We modified the sediment incipient motion in a numerical model and evaluated the impact of this modification using a study case of the coastal area around Weihai, China. The modified and unmodified versions of the mod...We modified the sediment incipient motion in a numerical model and evaluated the impact of this modification using a study case of the coastal area around Weihai, China. The modified and unmodified versions of the model were validated by comparing simulated and observed data of currents, waves, and suspended sediment concentrations(SSC) measured from July 25^(th) to July 26^(th), 2006. A fitted Shields diagram was introduced into the sediment model so that the critical erosional shear stress could vary with time. Thus, the simulated SSC patterns were improved to more closely reflect the observed values, so that the relative error of the variation range decreased by up to 34.5% and the relative error of simulated temporally averaged SSC decreased by up to 36%. In the modified model, the critical shear stress values of the simulated silt with a diameter of 0.035 mm and mud with a diameter of 0.004 mm varied from 0.05 to 0.13 N/m^2, and from 0.05 to 0.14 N/m^2, respectively, instead of remaining constant in the unmodified model. Besides, a method of applying spatially varying fractions of the mixed grain size sediment improved the simulated SSC distribution to fit better to the remote sensing map and reproduced the zonal area with high SSC between Heini Bay and the erosion groove in the modified model. The Relative Mean Absolute Error was reduced by between 6% and 79%, depending on the regional attributes when we used the modified method to simulate incipient sediment motion. But the modification achieved the higher accuracy in this study at a cost of computation speed decreasing by 1.52%.展开更多
To retrieve and explain the phase lag between current speed and suspended sediment concentration(SSC), erosion, deposition, and advection were isolated as primary processes of sediment movement in a three-dimensional ...To retrieve and explain the phase lag between current speed and suspended sediment concentration(SSC), erosion, deposition, and advection were isolated as primary processes of sediment movement in a three-dimensional model. The response time was proved to be one of the reasons for the phase lag, as time is needed for suspension to diffuse from bottom to surface. A fitted Shields diagram was introduced into the model to reflect the relationship between SSC and shear stress, between shear stress and critical shear stress, as well as between SSC and critical shear stress for erosion. It takes some time for shear stress to increase to the critical value after high or low tide, and this was proved to be an important contributor to the phase lag. Overall, the variation of vertically integrated SSC is influenced by erosion mass flux, deposition mass flux, and advection flux. The phase pattern of erosion mass flux is consistent with the pattern of current if there was no wave action. However, phase difference is produced by the influence of deposition mass flux and advection. In this study, SSC peak/trough mostly occurred near the moment erosion mass flux approximately equaled deposition mass flux and would be impacted by advection. The time required for instantaneous variation of suspension to get to 0 after current peak/trough represents the phase lag between current speed and SSC.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.41276084,41406100)
文摘We modified the sediment incipient motion in a numerical model and evaluated the impact of this modification using a study case of the coastal area around Weihai, China. The modified and unmodified versions of the model were validated by comparing simulated and observed data of currents, waves, and suspended sediment concentrations(SSC) measured from July 25^(th) to July 26^(th), 2006. A fitted Shields diagram was introduced into the sediment model so that the critical erosional shear stress could vary with time. Thus, the simulated SSC patterns were improved to more closely reflect the observed values, so that the relative error of the variation range decreased by up to 34.5% and the relative error of simulated temporally averaged SSC decreased by up to 36%. In the modified model, the critical shear stress values of the simulated silt with a diameter of 0.035 mm and mud with a diameter of 0.004 mm varied from 0.05 to 0.13 N/m^2, and from 0.05 to 0.14 N/m^2, respectively, instead of remaining constant in the unmodified model. Besides, a method of applying spatially varying fractions of the mixed grain size sediment improved the simulated SSC distribution to fit better to the remote sensing map and reproduced the zonal area with high SSC between Heini Bay and the erosion groove in the modified model. The Relative Mean Absolute Error was reduced by between 6% and 79%, depending on the regional attributes when we used the modified method to simulate incipient sediment motion. But the modification achieved the higher accuracy in this study at a cost of computation speed decreasing by 1.52%.
基金supported by the National Natural Science Foundations of China (Nos. 41276084 and 41406100)
文摘To retrieve and explain the phase lag between current speed and suspended sediment concentration(SSC), erosion, deposition, and advection were isolated as primary processes of sediment movement in a three-dimensional model. The response time was proved to be one of the reasons for the phase lag, as time is needed for suspension to diffuse from bottom to surface. A fitted Shields diagram was introduced into the model to reflect the relationship between SSC and shear stress, between shear stress and critical shear stress, as well as between SSC and critical shear stress for erosion. It takes some time for shear stress to increase to the critical value after high or low tide, and this was proved to be an important contributor to the phase lag. Overall, the variation of vertically integrated SSC is influenced by erosion mass flux, deposition mass flux, and advection flux. The phase pattern of erosion mass flux is consistent with the pattern of current if there was no wave action. However, phase difference is produced by the influence of deposition mass flux and advection. In this study, SSC peak/trough mostly occurred near the moment erosion mass flux approximately equaled deposition mass flux and would be impacted by advection. The time required for instantaneous variation of suspension to get to 0 after current peak/trough represents the phase lag between current speed and SSC.