Interactions between different scales in turbulence were studied starting from the incompressible Navier-Stokes equations. The integral and differential formulae of the short-range viscous stresses, which express the ...Interactions between different scales in turbulence were studied starting from the incompressible Navier-Stokes equations. The integral and differential formulae of the short-range viscous stresses, which express the short-range interactions between contiguous scales in turbulence,were given. A concept of the resonant-range interactions between extreme contiguous scales was introduced and the differential formula of the resonant-range viscous stresses was obtained. The short- and resonant-range viscous stresses were applied to deduce the large-eddy simulation (LES) equations as well as the multiscale equations, which are approximately closed and do not contain any empirical constants or relations. The properties and advantages of using the multiscale equations to compute turbulent flows were discussed. The short-range character of the interactions between the scales in turbulence means that the multiscale simulation is a very valuable technique for the calculation of turbulent flows. A few numerical examples were also given.展开更多
文摘Interactions between different scales in turbulence were studied starting from the incompressible Navier-Stokes equations. The integral and differential formulae of the short-range viscous stresses, which express the short-range interactions between contiguous scales in turbulence,were given. A concept of the resonant-range interactions between extreme contiguous scales was introduced and the differential formula of the resonant-range viscous stresses was obtained. The short- and resonant-range viscous stresses were applied to deduce the large-eddy simulation (LES) equations as well as the multiscale equations, which are approximately closed and do not contain any empirical constants or relations. The properties and advantages of using the multiscale equations to compute turbulent flows were discussed. The short-range character of the interactions between the scales in turbulence means that the multiscale simulation is a very valuable technique for the calculation of turbulent flows. A few numerical examples were also given.