Low energy consumption is one of the main challenges for wireless video transmission on battery limited devices. The energy invested at the lower layers of the protocol stack involved in data communication, such as li...Low energy consumption is one of the main challenges for wireless video transmission on battery limited devices. The energy invested at the lower layers of the protocol stack involved in data communication, such as link and physical layer, represent an important part of the total energy consumption. This communication energy highly depends on the channel conditions and on the transmission data rate. Traditionally, video coding is unaware of varying channel conditions. In this paper, we propose a cross-layer approach in which the rate control mechanism of the video codec becomes channel-aware and steers the instantaneous output rate according to the channel conditions to reduce the communication energy. Our results show that energy savings of up to30% can be obtained with a reduction of barely 0.1 dB on the average video quality. The impact of feedback delays is shown to be small. In addition, this adaptive mechanism has low complexity, which makes it suitable for real-time applications.展开更多
基金Project (No. IST-2004-004042) supported by European Project BETSY (BEing on Time Saves energY)
文摘Low energy consumption is one of the main challenges for wireless video transmission on battery limited devices. The energy invested at the lower layers of the protocol stack involved in data communication, such as link and physical layer, represent an important part of the total energy consumption. This communication energy highly depends on the channel conditions and on the transmission data rate. Traditionally, video coding is unaware of varying channel conditions. In this paper, we propose a cross-layer approach in which the rate control mechanism of the video codec becomes channel-aware and steers the instantaneous output rate according to the channel conditions to reduce the communication energy. Our results show that energy savings of up to30% can be obtained with a reduction of barely 0.1 dB on the average video quality. The impact of feedback delays is shown to be small. In addition, this adaptive mechanism has low complexity, which makes it suitable for real-time applications.