A finite group G is called exceptional if for a Galois extension F/k of number fields with the Galois group G,in the Brauer-Kuroda relation of the Dedekind zeta functions of fields between k and F,the zeta function of...A finite group G is called exceptional if for a Galois extension F/k of number fields with the Galois group G,in the Brauer-Kuroda relation of the Dedekind zeta functions of fields between k and F,the zeta function of F does not appear.In the present paper we describe effectively all exceptional groups of orders divisible by exactly two prime numbers p and q,which have unique subgroups of orders p and q.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 10871106)
文摘A finite group G is called exceptional if for a Galois extension F/k of number fields with the Galois group G,in the Brauer-Kuroda relation of the Dedekind zeta functions of fields between k and F,the zeta function of F does not appear.In the present paper we describe effectively all exceptional groups of orders divisible by exactly two prime numbers p and q,which have unique subgroups of orders p and q.