目的:评估基于注射用全氟丁烷微球[商品名示卓安(Sonazoid)]超声造影Kupffer期的深度学习模型预测肝细胞癌(hepatocellular carcinoma,HCC)微血管侵犯(microvascular invasion,MVI)的效能,并将其与影像组学模型及临床模型进行比较。方法...目的:评估基于注射用全氟丁烷微球[商品名示卓安(Sonazoid)]超声造影Kupffer期的深度学习模型预测肝细胞癌(hepatocellular carcinoma,HCC)微血管侵犯(microvascular invasion,MVI)的效能,并将其与影像组学模型及临床模型进行比较。方法:回顾并纳入2020年7月—2022年9月于广西医科大学第一附属医院接受Sonazoid超声造影检查的146例原发性HCC患者,以7∶3随机划分为训练集102例和验证集44例。基于肿瘤感兴趣区,使用ResNet101模型通过迁移学习提取深度学习特征,使用PyRadiomics提取影像组学特征。采用Mann-Whitney U检验、最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)算法进行特征降维。LASSO回归用于构建深度学习模型和影像组学模型,同时还基于临床特征构建一个临床模型。采用受试者工作特征曲线的曲线下面积(area under the curve,AUC)、灵敏度、特异度和准确度评估模型的诊断效能。DeLong检验用于比较模型间的诊断效能。结果:在训练集中,深度学习模型、影像组学模型、临床模型的AUC(95%CI)分别为0.931(0.880~0.981)、0.823(0.744~0.903)、0.719(0.614~0.824)。在验证集中,深度学习模型、影像组学模型、临床模型的AUC(95%CI)分别为0.895(0.757~1.000)、0.711(0.514~0.909)、0.606(0.390~0.822)。DeLong检验表明在训练集和验证集中,深度学习模型的诊断效能均优于影像组学模型及临床模型(P<0.05)。单因素及多因素logistic回归分析示甲胎蛋白和巴塞罗那临床肝癌分期可作为HCC患者MVI的独立预测因子(P<0.01)。结论:基于Sonazoid超声造影Kupffer期的深度学习模型在预测HCC患者MVI方面表现出优异的性能,有望成为预测MVI的无创影像学生物标志物。展开更多
Liquid film mulching is a new stage of agricultural mulching planting technology in China.In maize planting of arid area,liquid film mulching technology could improve physical-chemical properties,water content,tempera...Liquid film mulching is a new stage of agricultural mulching planting technology in China.In maize planting of arid area,liquid film mulching technology could improve physical-chemical properties,water content,temperature,water use efficiency and nutrient use efficiency of soil,thereby reaching the target of increasing yield and income.Meanwhile,it could decrease "white pollution",improve ecological environment of farmland,and realize good economic,social and ecological benefits.展开更多
文摘目的:评估基于注射用全氟丁烷微球[商品名示卓安(Sonazoid)]超声造影Kupffer期的深度学习模型预测肝细胞癌(hepatocellular carcinoma,HCC)微血管侵犯(microvascular invasion,MVI)的效能,并将其与影像组学模型及临床模型进行比较。方法:回顾并纳入2020年7月—2022年9月于广西医科大学第一附属医院接受Sonazoid超声造影检查的146例原发性HCC患者,以7∶3随机划分为训练集102例和验证集44例。基于肿瘤感兴趣区,使用ResNet101模型通过迁移学习提取深度学习特征,使用PyRadiomics提取影像组学特征。采用Mann-Whitney U检验、最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)算法进行特征降维。LASSO回归用于构建深度学习模型和影像组学模型,同时还基于临床特征构建一个临床模型。采用受试者工作特征曲线的曲线下面积(area under the curve,AUC)、灵敏度、特异度和准确度评估模型的诊断效能。DeLong检验用于比较模型间的诊断效能。结果:在训练集中,深度学习模型、影像组学模型、临床模型的AUC(95%CI)分别为0.931(0.880~0.981)、0.823(0.744~0.903)、0.719(0.614~0.824)。在验证集中,深度学习模型、影像组学模型、临床模型的AUC(95%CI)分别为0.895(0.757~1.000)、0.711(0.514~0.909)、0.606(0.390~0.822)。DeLong检验表明在训练集和验证集中,深度学习模型的诊断效能均优于影像组学模型及临床模型(P<0.05)。单因素及多因素logistic回归分析示甲胎蛋白和巴塞罗那临床肝癌分期可作为HCC患者MVI的独立预测因子(P<0.01)。结论:基于Sonazoid超声造影Kupffer期的深度学习模型在预测HCC患者MVI方面表现出优异的性能,有望成为预测MVI的无创影像学生物标志物。
基金Supported by Water Conservancy Science and Technology Project in Shanxi Province(201427,2015 STBC3,Jinshuicaiwu[2019]110)
文摘Liquid film mulching is a new stage of agricultural mulching planting technology in China.In maize planting of arid area,liquid film mulching technology could improve physical-chemical properties,water content,temperature,water use efficiency and nutrient use efficiency of soil,thereby reaching the target of increasing yield and income.Meanwhile,it could decrease "white pollution",improve ecological environment of farmland,and realize good economic,social and ecological benefits.