A series of Zn_(x)Ni_(y)CrO_(m±δ)catalysts were synthesized via a typical co-precipitation method,in which Zn-Cr layered double hydroxides(LDHs)were found and Ni-Zn intermetallic compound(IMC)was formed after re...A series of Zn_(x)Ni_(y)CrO_(m±δ)catalysts were synthesized via a typical co-precipitation method,in which Zn-Cr layered double hydroxides(LDHs)were found and Ni-Zn intermetallic compound(IMC)was formed after reduction in hydrogen.During auto-thermal reforming(ATR)of acetic acid(HAc),the Ni-Zn IMC was transformed into Ni/(amorphous-ZnO)-ZnCr_(2)O_(4) species with uniformed distribution and appropriate interaction within these Ni-Zn-Cr-O species;besides,the adsorbed oxygen promoted the activation and transfer of oxygen species;therefore,deactivation by oxidation,sintering and coking was inhibited.And the optimized Zn_(2.37)Ni_(0.63)CrO_(4.5±δ)catalyst presented high activity and stability in a 45-h ATR test with HAc conversion near 100%and hydrogen yield at 2.7 mol-H_(2)/mol-HAc,showing potential for hydrogen production via ATR of HAc.展开更多
基金supported by International Cooperation Program from Sichuan Science and Technology Program(Nos.2019YFH0181,2015HH0013)the National Natural Science Foundation of China(No.21276031)。
文摘A series of Zn_(x)Ni_(y)CrO_(m±δ)catalysts were synthesized via a typical co-precipitation method,in which Zn-Cr layered double hydroxides(LDHs)were found and Ni-Zn intermetallic compound(IMC)was formed after reduction in hydrogen.During auto-thermal reforming(ATR)of acetic acid(HAc),the Ni-Zn IMC was transformed into Ni/(amorphous-ZnO)-ZnCr_(2)O_(4) species with uniformed distribution and appropriate interaction within these Ni-Zn-Cr-O species;besides,the adsorbed oxygen promoted the activation and transfer of oxygen species;therefore,deactivation by oxidation,sintering and coking was inhibited.And the optimized Zn_(2.37)Ni_(0.63)CrO_(4.5±δ)catalyst presented high activity and stability in a 45-h ATR test with HAc conversion near 100%and hydrogen yield at 2.7 mol-H_(2)/mol-HAc,showing potential for hydrogen production via ATR of HAc.