We apply the heat jet approach to realize atomic simulations at finite temperature for a Frenkel–Kontorova chain with moving dislocation. This approach accurately and efficiently controls the system temperature by in...We apply the heat jet approach to realize atomic simulations at finite temperature for a Frenkel–Kontorova chain with moving dislocation. This approach accurately and efficiently controls the system temperature by injecting thermal fluctuations into the system from its boundaries, without modifying the governing equations for the interior domain. This guarantees the dislocation propagating in the atomic chain without nonphysical damping or deformation. In contrast to the non-equilibrium Nosé–Hoover heat bath, the heat jet approach efficiently suppresses boundary reflections while the moving dislocation and interior waves pass across the boundary. The system automatically returns back to the equilibrium state after all non-thermal motions pass away. We further apply this approach to study the impact of periodic potential and temperature field on the velocity of moving dislocation.展开更多
In this paper,we propose a stable heat jet approach for accurate temperature control of the nonlinear Fermi-Pasta-Ulam beta(FPU-β)chain.First,we design a stable nonlinear boundary condition,with co-efficients determi...In this paper,we propose a stable heat jet approach for accurate temperature control of the nonlinear Fermi-Pasta-Ulam beta(FPU-β)chain.First,we design a stable nonlinear boundary condition,with co-efficients determined by a machine learning technique.Its stability can be proved rigorously.Based on this stable boundary condition,we derive a two-way boundary condition complying with phonon heat source,and construct stable heat jet approach.Numerical tests illustrate the stability of the boundary condition and the effectiveness in eliminating boundary reflections.Furthermore,we extend the bound-ary condition formulation with more atoms,and train the coefficients to eliminate extreme short waves by machine learning technique.Under this extended boundary condition,the heat jet approach is effec-tive for high temperature,and may be adopted for multiscale computation of atomic motion at finite temperature.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11890681,11832001,and 11988102)。
文摘We apply the heat jet approach to realize atomic simulations at finite temperature for a Frenkel–Kontorova chain with moving dislocation. This approach accurately and efficiently controls the system temperature by injecting thermal fluctuations into the system from its boundaries, without modifying the governing equations for the interior domain. This guarantees the dislocation propagating in the atomic chain without nonphysical damping or deformation. In contrast to the non-equilibrium Nosé–Hoover heat bath, the heat jet approach efficiently suppresses boundary reflections while the moving dislocation and interior waves pass across the boundary. The system automatically returns back to the equilibrium state after all non-thermal motions pass away. We further apply this approach to study the impact of periodic potential and temperature field on the velocity of moving dislocation.
基金partially supported by the National Natural Science Foundation of China (Grants 11988102, 11521202, 11832001, and 11890681)
文摘In this paper,we propose a stable heat jet approach for accurate temperature control of the nonlinear Fermi-Pasta-Ulam beta(FPU-β)chain.First,we design a stable nonlinear boundary condition,with co-efficients determined by a machine learning technique.Its stability can be proved rigorously.Based on this stable boundary condition,we derive a two-way boundary condition complying with phonon heat source,and construct stable heat jet approach.Numerical tests illustrate the stability of the boundary condition and the effectiveness in eliminating boundary reflections.Furthermore,we extend the bound-ary condition formulation with more atoms,and train the coefficients to eliminate extreme short waves by machine learning technique.Under this extended boundary condition,the heat jet approach is effec-tive for high temperature,and may be adopted for multiscale computation of atomic motion at finite temperature.