Microbial communities and enzyme activities are the main players during municipal solid waste (MSW) composting, but the relationship between microbial communities (i.e., mesophilic and thermophilic ones) and enzyme ac...Microbial communities and enzyme activities are the main players during municipal solid waste (MSW) composting, but the relationship between microbial communities (i.e., mesophilic and thermophilic ones) and enzyme activities (i.e., dehydrogenase, β-glucosidase, phosphatase and urea) has not been well studied. Therefore, the objective of this work is to determine the enzymes profiles during municipal solid waste (MSW) composting and study the relationship between the mesophilic and thermophilic microbial profiles and enzyme activities. MSW was composted in a bench-scale composting reactor. Parameters including temperature, oxygen uptake rate, numbers of microbial populations (mesophilic and thermophilic bacteria and fungi) and enzyme activities were measured. Results showed higher dehydrogenase activities are related to higher numbers of mesophilic bacteria, while higher phosphatase and urea activities are associated with higher numbers of thermophilic fungi and mesophilic bacteria at the later stage of composting. In addition, results of the correlation analysis indicated significant correlations among enzyme activities and microbial population.展开更多
The productivity and health of our ocean hold some good solutions to the world’s challenges in socio-economy.However,climate change and waste discharge are changing the marine capacity to buffer human impacts,further...The productivity and health of our ocean hold some good solutions to the world’s challenges in socio-economy.However,climate change and waste discharge are changing the marine capacity to buffer human impacts,further challenging the marine industry,primarily in offshore oil and gas,shipping,and fishery operations.These encourage the blue economy,a sustainable development approach to utilize marine resources.Petroleum microbiology dealing with microbes that can respond,degrade,and alter crude oils,offers an unprecedented opportunity to achieve the knowledge-and science-based blue economy.However,the new-era petroleum microbiology for supporting the blue economy has yet to be systematically discussed.This review introduces the climate change impacts on key marine industrial sectors,highlights the critical role of advanced petroleum microbiology in supporting sustainable development,and offers insight into the challenges and future research opportunities in availing of petroleum microbiology for benefiting our marine environment and responsible economic growth.展开更多
文摘Microbial communities and enzyme activities are the main players during municipal solid waste (MSW) composting, but the relationship between microbial communities (i.e., mesophilic and thermophilic ones) and enzyme activities (i.e., dehydrogenase, β-glucosidase, phosphatase and urea) has not been well studied. Therefore, the objective of this work is to determine the enzymes profiles during municipal solid waste (MSW) composting and study the relationship between the mesophilic and thermophilic microbial profiles and enzyme activities. MSW was composted in a bench-scale composting reactor. Parameters including temperature, oxygen uptake rate, numbers of microbial populations (mesophilic and thermophilic bacteria and fungi) and enzyme activities were measured. Results showed higher dehydrogenase activities are related to higher numbers of mesophilic bacteria, while higher phosphatase and urea activities are associated with higher numbers of thermophilic fungi and mesophilic bacteria at the later stage of composting. In addition, results of the correlation analysis indicated significant correlations among enzyme activities and microbial population.
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)its Collaborative Research and Training Experience(CREATE)program on Persistent,Emerging,and Organic Pollution in the Environment(PEOPLE)+2 种基金the Canada Foundation for Innovation(CFI)the Canada Research Chair(CRC)Programthe Banting Postdoctoral Fellowship(BPF-186562)
文摘The productivity and health of our ocean hold some good solutions to the world’s challenges in socio-economy.However,climate change and waste discharge are changing the marine capacity to buffer human impacts,further challenging the marine industry,primarily in offshore oil and gas,shipping,and fishery operations.These encourage the blue economy,a sustainable development approach to utilize marine resources.Petroleum microbiology dealing with microbes that can respond,degrade,and alter crude oils,offers an unprecedented opportunity to achieve the knowledge-and science-based blue economy.However,the new-era petroleum microbiology for supporting the blue economy has yet to be systematically discussed.This review introduces the climate change impacts on key marine industrial sectors,highlights the critical role of advanced petroleum microbiology in supporting sustainable development,and offers insight into the challenges and future research opportunities in availing of petroleum microbiology for benefiting our marine environment and responsible economic growth.