Owing to their unique design and development,high safety and low-cost efficient cathode is still at the forefront of research for rechargeable zinc-ion batteries.However,the suitable cathode operating with ultrahigh c...Owing to their unique design and development,high safety and low-cost efficient cathode is still at the forefront of research for rechargeable zinc-ion batteries.However,the suitable cathode operating with ultrahigh capacity with a dendrite-free anode reaction mechanism remains challenging.In this,the first archetype of a high-rate and morphologically stabled cathode material is constructed from novel cauliflower-like nano-ZnV_(2)S_(4)for aqueous zinc-ion batteries.Thus,nano-ZnV_(2)S_(4)was prepared with an anion exchange reaction using ZnV2(OH)8 cauliflower-like nanostructured array as a template interestingly no morphological and shape changes were detected.The as-prepared nano-ZnV_(2)S_(4)electrode reveals a specific discharge capacity of 348.2 mAh/g during 0.5 A/g with enhanced rate capability and excellent capacity retention of 89.2%at 4 A/g current density even after completing 1000 cycles.展开更多
基金The authors acknowledge the funding for this project through the National Nature Science Foundations of China(No.51873083)Jasmine Jiangsu Fellowship of Jiangsu Province(No.180511800007)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX20_1453).
文摘Owing to their unique design and development,high safety and low-cost efficient cathode is still at the forefront of research for rechargeable zinc-ion batteries.However,the suitable cathode operating with ultrahigh capacity with a dendrite-free anode reaction mechanism remains challenging.In this,the first archetype of a high-rate and morphologically stabled cathode material is constructed from novel cauliflower-like nano-ZnV_(2)S_(4)for aqueous zinc-ion batteries.Thus,nano-ZnV_(2)S_(4)was prepared with an anion exchange reaction using ZnV2(OH)8 cauliflower-like nanostructured array as a template interestingly no morphological and shape changes were detected.The as-prepared nano-ZnV_(2)S_(4)electrode reveals a specific discharge capacity of 348.2 mAh/g during 0.5 A/g with enhanced rate capability and excellent capacity retention of 89.2%at 4 A/g current density even after completing 1000 cycles.