期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Variational Problems of Surfaces in a Sphere
1
作者 bang chao yin 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2021年第4期657-665,共9页
Let x:M→S^(n+p)(1)be an n-dimensional submanifold immersed in an(n+p)-dimensional unit sphere S^(n+p)(1).In this paper,we study n-dimensional submanifolds immersed in S^(n+p)(1)which are critical points of the functi... Let x:M→S^(n+p)(1)be an n-dimensional submanifold immersed in an(n+p)-dimensional unit sphere S^(n+p)(1).In this paper,we study n-dimensional submanifolds immersed in S^(n+p)(1)which are critical points of the functional S(x)=∫_(M)S^(n/2)dv,where S is the squared length of the second fundamental form of the immersion x.When x:M→S^(2+p)(1)is a surface in S^(2+p)(1),the functional S(x)=∫_(M)S^(n/2)dv represents double volume of image of Gaussian map.For the critical surface of S(x),we get a relationship between the integral of an extrinsic quantity of the surface and its Euler characteristic.Furthermore,we establish a rigidity theorem for the critical surface of S(x). 展开更多
关键词 SUBMANIFOLD VARIATION rigidity theorem Euler characteristic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部