Traditional methods of preparing metal-organic frameworks(MOFs)compounds have the disadvantages such as poor dispersion,inefficient and discontinuous process.In this work,microchannel reactor is used to prepare MOFs-d...Traditional methods of preparing metal-organic frameworks(MOFs)compounds have the disadvantages such as poor dispersion,inefficient and discontinuous process.In this work,microchannel reactor is used to prepare MOFs-derived zeolite-imidazole material via flash nanoprecipitation to form ZIF-67+PEI(FNP),which reduces the MOF synthesis time down to millisecond time interval while keeping the synthesized ZIF-67+PEI(FNP)highly dispersed.The Co@N–C(FNP)catalyst obtained by flash nanoprecipitation and carbonization has a higher Co content and thus more active sites for oxygen reduction reaction than the Co@N–C(DM)catalyst prepared by direct mixing method.Electrochemical tests show that the Co@N–C(FNP)catalyst prepared by this method has excellent oxygen reduction performance,good methanol resistance and high stability.The onset potential and half-wave potential of Co@N–C(FNP)are 0.92 VRHE and 0.83 VRHE,respectively,which are higher than that of Co@N–C(DM)(Eonset=0.90 VRHEand E1/2=0.83VRHE).Moreover,the Zn-air battery assembled with Co@N–C(FNP)as the cathode catalyst has high open circuit voltage,high power density and large specific capacity.The performance of these batteries has been comparable to that of Pt/C assembled batteries.Density functional theory(DFT)calculations confirm that the Co(220)crystal plane present in Co@N–C(FNP)have stronger adsorption energy than that of Co(111)crystal plane in Co@N–C(DM),leading to better electrocatalytic performance of the former.展开更多
High active and durable non-noble metal electrocatalysts are urgently developed to satisfy the high performance oxygen reduction reaction(ORR). We successfully synthesized Co-CoOx anchored on nitrogen-doped carbon via...High active and durable non-noble metal electrocatalysts are urgently developed to satisfy the high performance oxygen reduction reaction(ORR). We successfully synthesized Co-CoOx anchored on nitrogen-doped carbon via a facile sand-bath method(SBM), i.e., Co-CoOx/N-C(SBM). The as-obtained Co-CoOx/N-C(SBM) exhibited overwhelming superiorities to Co-CoO/N-C prepared by conventional heat treatment(CHT), particularly in electrochemical performance of ORR. Although Co-CoOx/N-C(SBM)showed smaller specific surface area of 276.8 m^2/g than that of 939.5 m^2/g from Co-CoO/N-C(CHT), the Co-CoOx/N-C(SBM) performed larger pore diameter and more Co_3O_4 active component resulting in better ORR performance in 0.1 mol/L KOH solution. The Co-CoO_x/N-C(SBM) delivered onset potential of 0.91 V vs. RHE, mid-wave potential of 0.85 V vs. RHE and limited current density of 5.46 mA/cm^2 much better than those of the Co-CoO/N-C(CHT). Furthermore, Co-CoOx/N-C(SBM) showed greater stability and better methanol tolerance superior to the commercial 20 wt% Pt/C.展开更多
Developing high efficiency and low cost electrocatalysts is critical for the enhancement of oxygen reduction reaction(ORR),which is the fundamental for the development and commercialization of renewable energy convers...Developing high efficiency and low cost electrocatalysts is critical for the enhancement of oxygen reduction reaction(ORR),which is the fundamental for the development and commercialization of renewable energy conversion technology.Herein,zinc-nitrogen-carbon(Zn-N-C)was prepared by using biomass resource chitosan via a facile carbon bath method.The obtained Zn-N-C delivered a high specific surface area(794.7 cm^2/g)together with pore volume(0.49 cm^3/g).During the electrochemical evaluation of oxygen reduction reaction(ORR),Zn-N-C displayed high activity for ORR with an onset pote ntial E0=0.96 VRHE and a half wave potential E1/2=0.86 VRHE,which were more positive than those of the comme rcial 20 wt%Pt/C benchmark catalyst(E0=0.96 VRHE and E1/2=0.81 VRHE).In addition,the ZnN-C catalyst also had a better stability and methanol tolerance than those of the Pt/C catalyst.展开更多
A novel Ag/AgCl/chitosan composite photocatalyst was successfully prepared by a simple one-step method. During this progress, environmentally benign chitosan not only served as reductant to reduce Ag+ to Ag0 species,...A novel Ag/AgCl/chitosan composite photocatalyst was successfully prepared by a simple one-step method. During this progress, environmentally benign chitosan not only served as reductant to reduce Ag+ to Ag0 species, but also acted as supporter for Ag/AgCI nanoparticles. XRD, SEM, EDX, UV-vis DRS and XPS were employed to characterize the as-prepared simples. SEM images of Ag/AgCI/chitosan composites revealed that Ag/AgCI nanoparticles were successfully loaded onto chitosan without obvious aggregation. All Ag/AgCI/chitosan composites exhibited efficient photocatalytic activity for the degradation of rhodamine B (RhB) under visible-light irradiation. The result of photocatalytic degradation experiment indicated that 20% of the mass ratio of AgCI to chitosan was the optimum, and after 40 min photocatalytic reaction, the degradation rate reached about 96%.展开更多
The variation of interlayer coupling can greatly affect the bandstructure of few layered transition metal dichalcogenides(TMDs),for instance,transition of indirect-to-direct bandgap and vice versa,which is correlated ...The variation of interlayer coupling can greatly affect the bandstructure of few layered transition metal dichalcogenides(TMDs),for instance,transition of indirect-to-direct bandgap and vice versa,which is correlated with the charge carrier and optical density.However,methods that can modulate the coupling strength in a controllable way are still lacking.Here,we report a fluidic dynamic strategy to tune the interlayer coupling of folded bi-layer MoS_(2).By controlling the flow direction and particle size of the fluid,mono-layer MoS_(2)can be folded into bi-layer with a controlled folding direction for designated twist angles as well as tunable interlayer coupling.Compared with normally folded bi-layer MoS_(2),the photoluminescence(PL)peak of the direct-bandgap transition for folded bi-layer MoS_(2)by fluid flow is weakened accompanied with the re-appearance of indirect-bandgap transition peak.Besides,the fluid flow creates a clear trajectory on the folded MoS_(2),exhibiting various degrees of interlayer coupling along it.Field-effect transistors(FETs)were further fabricated on tunably coupled folded-bi-layers,proving that the bandstructure and electrical property is strongly correlated with the degree of interlayer coupling.This fluidic dynamic strategy can be extended to other TMDs on any substrate,and together with its excellent capability in controlled interlayer coupling,it will provide a new way for the development of TMDs optoelectronics.展开更多
基金supported by National Natural Science Foundation of China(No.21865025)Science and Technology Innovation Talents Program of Bingtuan(No.2019CB025)。
文摘Traditional methods of preparing metal-organic frameworks(MOFs)compounds have the disadvantages such as poor dispersion,inefficient and discontinuous process.In this work,microchannel reactor is used to prepare MOFs-derived zeolite-imidazole material via flash nanoprecipitation to form ZIF-67+PEI(FNP),which reduces the MOF synthesis time down to millisecond time interval while keeping the synthesized ZIF-67+PEI(FNP)highly dispersed.The Co@N–C(FNP)catalyst obtained by flash nanoprecipitation and carbonization has a higher Co content and thus more active sites for oxygen reduction reaction than the Co@N–C(DM)catalyst prepared by direct mixing method.Electrochemical tests show that the Co@N–C(FNP)catalyst prepared by this method has excellent oxygen reduction performance,good methanol resistance and high stability.The onset potential and half-wave potential of Co@N–C(FNP)are 0.92 VRHE and 0.83 VRHE,respectively,which are higher than that of Co@N–C(DM)(Eonset=0.90 VRHEand E1/2=0.83VRHE).Moreover,the Zn-air battery assembled with Co@N–C(FNP)as the cathode catalyst has high open circuit voltage,high power density and large specific capacity.The performance of these batteries has been comparable to that of Pt/C assembled batteries.Density functional theory(DFT)calculations confirm that the Co(220)crystal plane present in Co@N–C(FNP)have stronger adsorption energy than that of Co(111)crystal plane in Co@N–C(DM),leading to better electrocatalytic performance of the former.
基金supported by the National Natural Science Foundation of China (No.U1303291)the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R46)
文摘High active and durable non-noble metal electrocatalysts are urgently developed to satisfy the high performance oxygen reduction reaction(ORR). We successfully synthesized Co-CoOx anchored on nitrogen-doped carbon via a facile sand-bath method(SBM), i.e., Co-CoOx/N-C(SBM). The as-obtained Co-CoOx/N-C(SBM) exhibited overwhelming superiorities to Co-CoO/N-C prepared by conventional heat treatment(CHT), particularly in electrochemical performance of ORR. Although Co-CoOx/N-C(SBM)showed smaller specific surface area of 276.8 m^2/g than that of 939.5 m^2/g from Co-CoO/N-C(CHT), the Co-CoOx/N-C(SBM) performed larger pore diameter and more Co_3O_4 active component resulting in better ORR performance in 0.1 mol/L KOH solution. The Co-CoO_x/N-C(SBM) delivered onset potential of 0.91 V vs. RHE, mid-wave potential of 0.85 V vs. RHE and limited current density of 5.46 mA/cm^2 much better than those of the Co-CoO/N-C(CHT). Furthermore, Co-CoOx/N-C(SBM) showed greater stability and better methanol tolerance superior to the commercial 20 wt% Pt/C.
基金supported by the National Natural Science Foundation of China(No.21865025)。
文摘Developing high efficiency and low cost electrocatalysts is critical for the enhancement of oxygen reduction reaction(ORR),which is the fundamental for the development and commercialization of renewable energy conversion technology.Herein,zinc-nitrogen-carbon(Zn-N-C)was prepared by using biomass resource chitosan via a facile carbon bath method.The obtained Zn-N-C delivered a high specific surface area(794.7 cm^2/g)together with pore volume(0.49 cm^3/g).During the electrochemical evaluation of oxygen reduction reaction(ORR),Zn-N-C displayed high activity for ORR with an onset pote ntial E0=0.96 VRHE and a half wave potential E1/2=0.86 VRHE,which were more positive than those of the comme rcial 20 wt%Pt/C benchmark catalyst(E0=0.96 VRHE and E1/2=0.81 VRHE).In addition,the ZnN-C catalyst also had a better stability and methanol tolerance than those of the Pt/C catalyst.
文摘A novel Ag/AgCl/chitosan composite photocatalyst was successfully prepared by a simple one-step method. During this progress, environmentally benign chitosan not only served as reductant to reduce Ag+ to Ag0 species, but also acted as supporter for Ag/AgCI nanoparticles. XRD, SEM, EDX, UV-vis DRS and XPS were employed to characterize the as-prepared simples. SEM images of Ag/AgCI/chitosan composites revealed that Ag/AgCI nanoparticles were successfully loaded onto chitosan without obvious aggregation. All Ag/AgCI/chitosan composites exhibited efficient photocatalytic activity for the degradation of rhodamine B (RhB) under visible-light irradiation. The result of photocatalytic degradation experiment indicated that 20% of the mass ratio of AgCI to chitosan was the optimum, and after 40 min photocatalytic reaction, the degradation rate reached about 96%.
基金National Natural Science Foundation of China(Nos.21903007 and 22072006)Young Thousand Talents Program(No.110532103)+2 种基金Beijing Normal University Startup funding(No.312232102)the Fundamental Research Funds for the Central Universities(No.310421109)Double First Class General Science and Technology Projects from School of Chemistry and Chemical Engineering,Shihezi University(No.SHYL-YB201903).
文摘The variation of interlayer coupling can greatly affect the bandstructure of few layered transition metal dichalcogenides(TMDs),for instance,transition of indirect-to-direct bandgap and vice versa,which is correlated with the charge carrier and optical density.However,methods that can modulate the coupling strength in a controllable way are still lacking.Here,we report a fluidic dynamic strategy to tune the interlayer coupling of folded bi-layer MoS_(2).By controlling the flow direction and particle size of the fluid,mono-layer MoS_(2)can be folded into bi-layer with a controlled folding direction for designated twist angles as well as tunable interlayer coupling.Compared with normally folded bi-layer MoS_(2),the photoluminescence(PL)peak of the direct-bandgap transition for folded bi-layer MoS_(2)by fluid flow is weakened accompanied with the re-appearance of indirect-bandgap transition peak.Besides,the fluid flow creates a clear trajectory on the folded MoS_(2),exhibiting various degrees of interlayer coupling along it.Field-effect transistors(FETs)were further fabricated on tunably coupled folded-bi-layers,proving that the bandstructure and electrical property is strongly correlated with the degree of interlayer coupling.This fluidic dynamic strategy can be extended to other TMDs on any substrate,and together with its excellent capability in controlled interlayer coupling,it will provide a new way for the development of TMDs optoelectronics.