Excess phosphorus from non-point pollution sources is one of the key factors causing eutrophication in many lakes in China,so finding a cost-effective method to remove phosphorus from non-point pollution sources is ve...Excess phosphorus from non-point pollution sources is one of the key factors causing eutrophication in many lakes in China,so finding a cost-effective method to remove phosphorus from non-point pollution sources is very important for the health of the aqueous environment. Graphene was selected to support nanoscale zero-valent iron(nZVI)for phosphorus removal from synthetic rainwater runoff in this article. Compared with nZVI supported on other porous materials,graphene-supported nZVI(G-nZVI) could remove phosphorus more efficiently. The amount of nZVI in G-nZVI was an important factor in the removal of phosphorus by G-nZVI,and G-nZVI with 20 wt.% nZVI(20% G-nZVI)could remove phosphorus most efficiently. The nZVI was very stable and could disperse very well on graphene,as characterized by transmission electron microscopy(TEM) and scanning electron microscopy(SEM). X-ray photoelectron spectroscopy(XPS),Fourier Transform infrared spectroscopy(FT-IR) and Raman spectroscopy were used to elucidate the reaction process,and the results indicated that Fe-O-P was formed after phosphorus was adsorbed by G-nZVI. The results obtained from X-ray diffraction(XRD) indicated that the reaction product between nZVI supported on graphene and phosphorus was Fe3(PO4)2·8H2O(Vivianite). It was confirmed that the specific reaction mechanism for the removal of phosphorus with nZVI or G-nZVI was mainly due to chemical reaction between nZVI and phosphorus.展开更多
Zeolite (Na) modified by self-synthesized nano-Fe particles was used as infiltration media to adsorb phosphate in rainwater runoff. The adsorption capacities increased up to 75 times that of natural zeolite at a sat...Zeolite (Na) modified by self-synthesized nano-Fe particles was used as infiltration media to adsorb phosphate in rainwater runoff. The adsorption capacities increased up to 75 times that of natural zeolite at a saturated equilibrium phosphate concentration of 0.42 mg/L. The correlation of capacity and material-specific surface area indicated that specific surface area was not the key factor contributing to the capacity improvement. SEM and XRD analysis showed that chemical reaction between Fe and P to form new products like cacoxenite is the main reason for the increased capacity, and that the method of adding metal ions or particles to improve the adsorption capacity for phosphate is feasible.展开更多
基金supported by the Major Science and Technology Programs for Water Pollution Control and Management of China (Nos.2011ZX07301-002 and 2012ZX07205-001)
文摘Excess phosphorus from non-point pollution sources is one of the key factors causing eutrophication in many lakes in China,so finding a cost-effective method to remove phosphorus from non-point pollution sources is very important for the health of the aqueous environment. Graphene was selected to support nanoscale zero-valent iron(nZVI)for phosphorus removal from synthetic rainwater runoff in this article. Compared with nZVI supported on other porous materials,graphene-supported nZVI(G-nZVI) could remove phosphorus more efficiently. The amount of nZVI in G-nZVI was an important factor in the removal of phosphorus by G-nZVI,and G-nZVI with 20 wt.% nZVI(20% G-nZVI)could remove phosphorus most efficiently. The nZVI was very stable and could disperse very well on graphene,as characterized by transmission electron microscopy(TEM) and scanning electron microscopy(SEM). X-ray photoelectron spectroscopy(XPS),Fourier Transform infrared spectroscopy(FT-IR) and Raman spectroscopy were used to elucidate the reaction process,and the results indicated that Fe-O-P was formed after phosphorus was adsorbed by G-nZVI. The results obtained from X-ray diffraction(XRD) indicated that the reaction product between nZVI supported on graphene and phosphorus was Fe3(PO4)2·8H2O(Vivianite). It was confirmed that the specific reaction mechanism for the removal of phosphorus with nZVI or G-nZVI was mainly due to chemical reaction between nZVI and phosphorus.
基金supported by the Chinese National Special Science & Technology Project on Treatment and Control of Water Pollution (No.2008ZX07313-004)
文摘Zeolite (Na) modified by self-synthesized nano-Fe particles was used as infiltration media to adsorb phosphate in rainwater runoff. The adsorption capacities increased up to 75 times that of natural zeolite at a saturated equilibrium phosphate concentration of 0.42 mg/L. The correlation of capacity and material-specific surface area indicated that specific surface area was not the key factor contributing to the capacity improvement. SEM and XRD analysis showed that chemical reaction between Fe and P to form new products like cacoxenite is the main reason for the increased capacity, and that the method of adding metal ions or particles to improve the adsorption capacity for phosphate is feasible.