期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Blockchain-Based MCS Detection Framework of Abnormal Spectrum Usage for Satellite Spectrum Sharing Scenario
1
作者 Ning Yang Heng Wang +3 位作者 Jingming Hu bangning zhang Daoxing Guo Yuan Liu 《China Communications》 SCIE CSCD 2024年第2期32-48,共17页
In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit... In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework. 展开更多
关键词 blockchain hypothesis test mobile crowdsensing satellite communication spectrum sharing
下载PDF
Anti-Jamming Trajectory Design for UAV-Enabled Wireless Sensor Networks Using Communication Flight Corridor
2
作者 Binbin Wu bangning zhang +2 位作者 Daoxing Guo Hongbin Wang Hao Jiang 《China Communications》 SCIE CSCD 2022年第7期37-52,共16页
This paper investigates the anti-jamming trajectory design to safeguard the effective data collection, where a unmanned aerial vehicle(UAV)is dispatched to collect data over multiple sensor nodes(SNs) in jamming envir... This paper investigates the anti-jamming trajectory design to safeguard the effective data collection, where a unmanned aerial vehicle(UAV)is dispatched to collect data over multiple sensor nodes(SNs) in jamming environment. Under the limited power and transmission range of SNs, we aim to minimize the UAV’s flight energy consumption in a finite task period, by jointly optimizing SNs collection sequence and UAV flight trajectory. Firstly, we propose a general optimization framework which consists of path planning and trajectory optimization for the formulated non-convex problem. In the path planning phase, a dynamic programming(DP) algorithm is used to provide the initial path of the UAV, which is the shortest path to visit each SN. In the trajectory optimization phase, we introduce the concept of Communication Flight Corridor(CFC) to meet the non-convex constraints and apply a piecewise Bézier curve, based on Bernoulli polynomial, to represent the flight trajectory of the UAV, which can transform the optimization variables from infinite time variables to polynomial coefficients of finite order. Finally, we simulate the flight trajectory of UAV in hovering mode and continuous flight mode under different parameters, and the simulation results demonstrate the effectiveness of the proposed method. 展开更多
关键词 UAV data collection jamming environment path planning trajectory optimization
下载PDF
Parameter Estimation of Multiple Frequency-Hopping Signals Based on Space-Time-Frequency Analysis by Atomic Norm Soft Thresholding with Missing Observations
3
作者 Hongbin Wang bangning zhang +2 位作者 Heng Wang Binbin Wu Daoxing Guo 《China Communications》 SCIE CSCD 2022年第7期135-151,共17页
In this paper,we address the problem of multiple frequency-hopping(FH)signal parameters estimation in the presence of random missing observations.A space-time matrix with random missing observations is acquired by a u... In this paper,we address the problem of multiple frequency-hopping(FH)signal parameters estimation in the presence of random missing observations.A space-time matrix with random missing observations is acquired by a uniform linear array(ULA).We exploit the inherent incomplete data processing capability of atomic norm soft thresholding(AST)to analyze the space-time matrix and complete the accurate estimation of the hopping time and frequency of the received FH signals.The hopping time is obtained by the sudden changes of the spatial information,which is implemented as the boundary to divide the time domain signal so that each segment of the signal is a superposition of time-invariant multiple components.Then,the frequency of multiple signal components can be estimated precisely by AST within each segment.After obtaining the above two parameters of the hopping time and the frequency of signals,the direction of arrival(DOA)can be directly calculated by them,and the network sorting can be realized.Results of simulation show that the proposed method is superior to the existing technology.Even when a large portion of data observations is missing,as the number of array elements increases,the proposed method still achieves acceptable accuracy of multi-FH signal parameters estimation. 展开更多
关键词 frequency hopping parameter estimation missing observations atomic norm soft thresholding uniform linear array
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部