We consider the properties on solutions of some q-difference equations of the form ∑ n j=0 aj(z)f(qj z)=an+1(z), where a0(z),..., an+1(z) are meromorphic functions, a0(z)an(z) ≠ 0 and q ∈ C such th...We consider the properties on solutions of some q-difference equations of the form ∑ n j=0 aj(z)f(qj z)=an+1(z), where a0(z),..., an+1(z) are meromorphic functions, a0(z)an(z) ≠ 0 and q ∈ C such that 0 〈 |q| ≤ 1. We give estimates on the upper bound for the length of the gap in the power series of entire solutions of (*) when the coefficients a0(z),..., an+1(z) are polynomials and 0 〈 |q| 〈 1. For some special cases, we give estimates of growth of f(z). And we also show that the case 0 〈 |q| 〈 1 is different from the case |q|=1.展开更多
基金Supported by National Natural Science Foundation of China (Grant No. 10871076)
文摘We consider the properties on solutions of some q-difference equations of the form ∑ n j=0 aj(z)f(qj z)=an+1(z), where a0(z),..., an+1(z) are meromorphic functions, a0(z)an(z) ≠ 0 and q ∈ C such that 0 〈 |q| ≤ 1. We give estimates on the upper bound for the length of the gap in the power series of entire solutions of (*) when the coefficients a0(z),..., an+1(z) are polynomials and 0 〈 |q| 〈 1. For some special cases, we give estimates of growth of f(z). And we also show that the case 0 〈 |q| 〈 1 is different from the case |q|=1.