Within the nonlinear relativistic mean field(NLRMF) model, we show that both the pressure of symmetric nuclear matter at supra-saturation densities and the maximum mass of neutron stars are sensitive to the skewness c...Within the nonlinear relativistic mean field(NLRMF) model, we show that both the pressure of symmetric nuclear matter at supra-saturation densities and the maximum mass of neutron stars are sensitive to the skewness coefficient, J_0, of symmetric nuclear matter. Using experimental constraints on the pressure of symmetric nuclear matter at supra-saturation densities from flow data in heavy-ion collisions and the astrophysical observation of a large mass neutron star PSR J0348+0432, with the former favoring a smaller J_0 while the latter favors a larger J_0, we extract a constraint of -494 MeV≤J_0≤-10 MeV based on the NL-RMF model. This constraint is compared with the results obtained in other analyses.展开更多
We examine critically how tightly the density dependence of nuclear symmetry energy E_(sym)(q) is constrained by the universal equation of state of the unitary Fermi gas EUG(q) considering currently known uncertaintie...We examine critically how tightly the density dependence of nuclear symmetry energy E_(sym)(q) is constrained by the universal equation of state of the unitary Fermi gas EUG(q) considering currently known uncertainties of higher order parameters describing the density dependence of the equation of state of isospin asymmetric nuclear matter. We found that E_(UG)(q) does provide a useful lower boundary for the E_(sym)(q). However, it doesnot tightly constrain the correlation between the magnitude E_(sym)(q_0) and slope L unless the curvature K_(sym)of the symmetry energy at saturation density q_0 is more precisely known. The large uncertainty in the skewness parameters affects the E_(sym)(q_0) versus L correlation by the same almost as significantly as the uncertainty in K_(sym).展开更多
In this talk,we first briefly review the isospin dependence of the total nucleon effective mass M Jinferred from analyzing nucleon-nucleus scattering data within an isospin-dependent non-relativistic optical potential...In this talk,we first briefly review the isospin dependence of the total nucleon effective mass M Jinferred from analyzing nucleon-nucleus scattering data within an isospin-dependent non-relativistic optical potential model,and the isospin dependence of the nucleon E-mass M;E J obtained from applying the Migdal–Luttinger theorem to a phenomenological single-nucleon momentum distribution in nuclei constrained by recent electron-nucleus scatteringexperiments.Combining information about the isospin dependence of both the nucleon total effective mass and E-mass,we then infer the isospin dependence of nucleon k-mass using the well-known relation M_J~*=M_ J^(*1E).Implications of the results on the nucleon mean free path in neutron-rich matter are discussed.展开更多
基金supported in part by the Major State Basic Research Development Program(973 Program)in China(Nos.2013CB834405 and 2015CB856904)the National Natural Science Foundation of China(Nos.11625521,11275125 and 11135011)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,Key Laboratory for Particle Physics,Astrophysics and Cosmology,Ministry of Education,China,and the Science and Technology Commission of Shanghai Municipality(No.11DZ2260700)
文摘Within the nonlinear relativistic mean field(NLRMF) model, we show that both the pressure of symmetric nuclear matter at supra-saturation densities and the maximum mass of neutron stars are sensitive to the skewness coefficient, J_0, of symmetric nuclear matter. Using experimental constraints on the pressure of symmetric nuclear matter at supra-saturation densities from flow data in heavy-ion collisions and the astrophysical observation of a large mass neutron star PSR J0348+0432, with the former favoring a smaller J_0 while the latter favors a larger J_0, we extract a constraint of -494 MeV≤J_0≤-10 MeV based on the NL-RMF model. This constraint is compared with the results obtained in other analyses.
基金supported in part by the China Scholarship Councilthe U.S.Department of Energy,Office of Science,under Award Number DE-SC0013702+7 种基金the CUSTIPEN(China-U.S.Theory Institute for Physics with Exotic Nuclei) under the US Department of Energy Grant No.DE-SC0009971the National Natural Science Foundation of China under Grant No.11320101004the Texas Advanced Computing Centersupported in part by the Major State Basic Research Development Program(973Program) of China under Contract Nos.2015CB856904 and 2014CB845401the National Natural Science Foundation of China under Grant Nos.11475243 and 11421505the ‘‘100-talent plan’’ of Shanghai Institute of Applied Physics under Grant Nos.Y290061011and Y526011011 from the Chinese Academy of Sciencesthe Shanghai Key Laboratory of Particle Physics and Cosmology under Grant No.15DZ2272100the Shanghai Pujiang Program under Grant No.13PJ1410600
文摘We examine critically how tightly the density dependence of nuclear symmetry energy E_(sym)(q) is constrained by the universal equation of state of the unitary Fermi gas EUG(q) considering currently known uncertainties of higher order parameters describing the density dependence of the equation of state of isospin asymmetric nuclear matter. We found that E_(UG)(q) does provide a useful lower boundary for the E_(sym)(q). However, it doesnot tightly constrain the correlation between the magnitude E_(sym)(q_0) and slope L unless the curvature K_(sym)of the symmetry energy at saturation density q_0 is more precisely known. The large uncertainty in the skewness parameters affects the E_(sym)(q_0) versus L correlation by the same almost as significantly as the uncertainty in K_(sym).
基金supported in part by the US Department of Energy’s Office of Science under Award Number DE-SC0013702the CUSTIPEN(China-US Theory Institute for Physics with Exotic Nuclei)under the US Department of Energy Grant No.DESC0009971+6 种基金the National Natural Science Foundation of China Under Grant Nos.11320101004,11275125,11205083 and 11135011the Major State Basic Research Development Program(973 Program)in China under Contract Nos.2013CB834405 and 2015CB856904the‘‘Shu Guang’’project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundationthe Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning,the Science and Technology Commission of Shanghai Municipality(11DZ2260700)the construct program of the key discipline in Hunan province,the Research Foundation of Education Bureau of Hunan Province,China(Grant No.15A159)the Natural Science Foundation of Hunan Province,China(Grant No.2015JJ3103)the Innovation Group of Nuclear and Particle Physics in USC
文摘In this talk,we first briefly review the isospin dependence of the total nucleon effective mass M Jinferred from analyzing nucleon-nucleus scattering data within an isospin-dependent non-relativistic optical potential model,and the isospin dependence of the nucleon E-mass M;E J obtained from applying the Migdal–Luttinger theorem to a phenomenological single-nucleon momentum distribution in nuclei constrained by recent electron-nucleus scatteringexperiments.Combining information about the isospin dependence of both the nucleon total effective mass and E-mass,we then infer the isospin dependence of nucleon k-mass using the well-known relation M_J~*=M_ J^(*1E).Implications of the results on the nucleon mean free path in neutron-rich matter are discussed.