Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principl...Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principle. A feedback control strategy of the momentum wheel is ap- plied for the attitude maneuver. The residual nutation of the spacecraft in maneuver process changes with some chosen parameters, such as steady state time, locations of the liq- uid container and the appendage, and appendage parame- ters. The results indicate that locations in the second and fourth quadrants of the body-fixed coordinate system and the second quadrant of the wall of the main body are better choices for.placing the liquid containers and the appendage than other locations if they can be placed randomly. Higher density and thicker cross section are better for lowering the residual nutation if they can be changed. Light appendage can be modeled as a rigid body, which results in a larger residual nutation than a flexible model though. The resid- ual nutation decreases with increasing absolute value of the initial sloshing angular height.展开更多
This paper is mainly concerned with the coupling dynamic analysis of a complex spacecraft consisting of one main rigid platform, multiple liquid-filled cylindrical tanks, and a number of flexible appendages. Firstly, ...This paper is mainly concerned with the coupling dynamic analysis of a complex spacecraft consisting of one main rigid platform, multiple liquid-filled cylindrical tanks, and a number of flexible appendages. Firstly, the carrier potential function equations of liquid in the tanks are deduced according to the wall boundary conditions. Through employ- ing the Fourier-Bessel series expansion method, the dynamic boundaries conditions on a curved free-surface under a low-gravity environment are transformed to general simple differential equations and the rigid-liquid coupled sloshing dynamic state equations of liquid in tanks are obtained. The state vectors of rigid-liquid coupled equations are composed with the modal coordinates of the relative potential func- tion and the modal coordinates of wave height. Based on the B ernoulli-Euler beam theory and the D'Alembert's prin- ciple, the rigid-flexible coupled dynamic state equations of flexible appendages are directly derived, and the coordi- nate transform matrixes of maneuvering flexible appendages are precisely computed as time-varying. Then, the cou- pling dynamics state equations of the overall system of the spacecraft are modularly built by means of the Lagrange's equations in terms of quasi-coordinates. Lastly, the cou-piing dynamic performances of a typical complex spacecraft are studied. The availability and reliability of the presented method are also confirmed.展开更多
This paper is mainly focused on the attitude dynamics and control of a fuel-filled flexible spacecraft sub- jected to the thermal payload during eclipse transitions. The flexible appendages are considered as Euler-Ber...This paper is mainly focused on the attitude dynamics and control of a fuel-filled flexible spacecraft sub- jected to the thermal payload during eclipse transitions. The flexible appendages are considered as Euler-Bernoulli beams, and the sloshing liquid is modeled as in two modes multi-spring-mass models; the governing equations of this coupled system are developed by using Hamilton's prin- ciple. Numerical results show that the spacecraft attitude responses consist of a quasi-static displacement and superim- posed vibration. Then, we design an adaptive sliding mode and use the Lyapunov approach control law to control the attitude disturbance and suppress the thermal jitter and liq- uid sloshing for the fuel filled flexible spacecraft subject to the thermal payload. Numerical results are presented to verify the efficiency of the hybrid control methods. The results show that the adaptive sliding mode method might be effective to handle the steady-state errors and the Lyapunov control algo- rithm would suppress the residual vibration.展开更多
基金supported by the National Natural Science Foundation of China (11072030)
文摘Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principle. A feedback control strategy of the momentum wheel is ap- plied for the attitude maneuver. The residual nutation of the spacecraft in maneuver process changes with some chosen parameters, such as steady state time, locations of the liq- uid container and the appendage, and appendage parame- ters. The results indicate that locations in the second and fourth quadrants of the body-fixed coordinate system and the second quadrant of the wall of the main body are better choices for.placing the liquid containers and the appendage than other locations if they can be placed randomly. Higher density and thicker cross section are better for lowering the residual nutation if they can be changed. Light appendage can be modeled as a rigid body, which results in a larger residual nutation than a flexible model though. The resid- ual nutation decreases with increasing absolute value of the initial sloshing angular height.
基金project was supported by the National Natural Science Foundation of China (Grants 11472041, 11302244, 11532002)Guangxi Natural Science Foundation (2015GXNSFBA 139013)
文摘This paper is mainly concerned with the coupling dynamic analysis of a complex spacecraft consisting of one main rigid platform, multiple liquid-filled cylindrical tanks, and a number of flexible appendages. Firstly, the carrier potential function equations of liquid in the tanks are deduced according to the wall boundary conditions. Through employ- ing the Fourier-Bessel series expansion method, the dynamic boundaries conditions on a curved free-surface under a low-gravity environment are transformed to general simple differential equations and the rigid-liquid coupled sloshing dynamic state equations of liquid in tanks are obtained. The state vectors of rigid-liquid coupled equations are composed with the modal coordinates of the relative potential func- tion and the modal coordinates of wave height. Based on the B ernoulli-Euler beam theory and the D'Alembert's prin- ciple, the rigid-flexible coupled dynamic state equations of flexible appendages are directly derived, and the coordi- nate transform matrixes of maneuvering flexible appendages are precisely computed as time-varying. Then, the cou- pling dynamics state equations of the overall system of the spacecraft are modularly built by means of the Lagrange's equations in terms of quasi-coordinates. Lastly, the cou-piing dynamic performances of a typical complex spacecraft are studied. The availability and reliability of the presented method are also confirmed.
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant 11472041)the Research Fund for the Doctoral Program of Higher Education of China(Grant 20131101110002)
文摘This paper is mainly focused on the attitude dynamics and control of a fuel-filled flexible spacecraft sub- jected to the thermal payload during eclipse transitions. The flexible appendages are considered as Euler-Bernoulli beams, and the sloshing liquid is modeled as in two modes multi-spring-mass models; the governing equations of this coupled system are developed by using Hamilton's prin- ciple. Numerical results show that the spacecraft attitude responses consist of a quasi-static displacement and superim- posed vibration. Then, we design an adaptive sliding mode and use the Lyapunov approach control law to control the attitude disturbance and suppress the thermal jitter and liq- uid sloshing for the fuel filled flexible spacecraft subject to the thermal payload. Numerical results are presented to verify the efficiency of the hybrid control methods. The results show that the adaptive sliding mode method might be effective to handle the steady-state errors and the Lyapunov control algo- rithm would suppress the residual vibration.