期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
The Global Well-posedness of Strong Solutions to 2D MHD Equations in Lei-Lin Space
1
作者 bao-quan yuan Ya-min XIAO 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2023年第3期647-655,共9页
In this paper, we study the Cauchy problem of the 2D incompressible magnetohydrodynamic equations in Lei-Lin space. The global well-posedness of a strong solution in the Lei-Lin space χ^(-1)(R^(2)) with any initial d... In this paper, we study the Cauchy problem of the 2D incompressible magnetohydrodynamic equations in Lei-Lin space. The global well-posedness of a strong solution in the Lei-Lin space χ^(-1)(R^(2)) with any initial data in χ^(-1)(R^(2)) ∩ L^(2)(R^(2)) is established. Furthermore, the uniqueness of the strong solution in χ^(-1)(R^(2)) and the Leray-Hopf weak solution in L^(2)(R^(2)) is proved. 展开更多
关键词 2D MHD equations strong solutions Lei-Lin space weak-strong uniqueness
原文传递
On the Blow-up Criterion of Smooth Solutions to the MHD System in BMO Space 被引量:9
2
作者 bao-quan yuan 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2006年第3期413-418,共6页
In this paper we study the blow-up criterion of smooth solutions to the incompressible magnetohydrodynamics system in BMO space. Let (u(x,t),b(x,t)) be smooth solutions in (0, T). It is shown that the solution... In this paper we study the blow-up criterion of smooth solutions to the incompressible magnetohydrodynamics system in BMO space. Let (u(x,t),b(x,t)) be smooth solutions in (0, T). It is shown that the solution (u(x, t), b(x, t)) can be extended beyond t = T if (u(x,t), b(x, t)) ∈ L^1 (0, T; BMO) or the vorticity (rot u(x, t), rot b(x, t)) ∈ L^1 (0, T; BMO) or the deformation (Def u(x, t), Def b(x, t)) ∈ L^1 (0, T; BMO). 展开更多
关键词 Magneto-hydrodynamics system BMO space blow-up criterion
原文传递
Regularity Condition of Solutions to the Quasi-geostrophic Equations in Besov Spaces with Negative Indices 被引量:1
3
作者 bao-quan yuan 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2010年第3期381-386,共6页
With a Hǒlder type inequality in Besov spaces, we show that every strong solution θ(t, x) on (0, T ) of the dissipative quasi-geostrophic equations can be continued beyond T provided that ⊥θ(t, x) ∈L 2γ/... With a Hǒlder type inequality in Besov spaces, we show that every strong solution θ(t, x) on (0, T ) of the dissipative quasi-geostrophic equations can be continued beyond T provided that ⊥θ(t, x) ∈L 2γ/γ-2δ ((0, T ); B^δ-γ/2 ∞∞(R^2)) for 0 〈 δ 〈 γ/2 . 展开更多
关键词 Quasi-geostrophic equations regularity conditions Besov spaces
原文传递
Regularity Criteria of Axisymmetric Weak Solutions to the 3D Magnetohydrodynamic Equations
4
作者 bao-quan yuan Feng-ping LI 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2013年第2期289-302,共14页
In this paper, we study the regularity criteria for axisymmetric weak solutions to the MHD equa- tions in R3. Let we, Jo and ue be the azimuthal component of w, J and u in the cylindrical coordinates, respectively. Th... In this paper, we study the regularity criteria for axisymmetric weak solutions to the MHD equa- tions in R3. Let we, Jo and ue be the azimuthal component of w, J and u in the cylindrical coordinates, respectively. Then the axisymmetric weak solution (u,b) is regular on (0, T) if (wo,Jo) E Lq(O,T;Lp) or (oae,V(uoeo)) e Lq(0,T;Lp) with 3 + 2 〈 2, 3 〈 p 〈 oo. In the endpoint case, one needs conditions (we, Jo) C LI(0, T;B∞∞) or (wo, V(uoeo)) C LI(0, T;B ∞∞). 展开更多
关键词 regularity criteria axisymmetric solutions Besov space
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部