It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing ...It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.展开更多
To find suitable biodegradable materials for implant applications,Mg−6Zn−0.3Mn−xCa(x=0,0.2 and 0.5,wt.%)alloys were prepared by semi-continuous casting followed by hot-extrusion technique.The microstructure and mechan...To find suitable biodegradable materials for implant applications,Mg−6Zn−0.3Mn−xCa(x=0,0.2 and 0.5,wt.%)alloys were prepared by semi-continuous casting followed by hot-extrusion technique.The microstructure and mechanical properties of Mg−6Zn−0.3Mn−xCa alloys were investigated using the optical microscope,scanning electron microscope and tensile testing.Results indicated that minor Ca addition can slightly refine grains of the extruded Mg−6Zn−0.3Mn alloy and improve its strength.When 0.2 wt.%and 0.5 wt.%Ca were added,the grain sizes of the as-extruded alloys were refined from 4.8 to 4.6 and 4.2μm,respectively.Of the three alloys studied,the alloy with 0.5 wt.%Ca exhibits better combined mechanical properties with the ultimate tensile strength and elongation of 334 MPa and 20.3%.The corrosion behaviour,cell viability and antibacterial activities of alloys studied were also evaluated.Increasing Ca content deteriorates the corrosion resistance of alloys due to the increase of amount of effective cathodic sites caused by the formation of more Ca2Mg6Zn3 phases.Cytotoxicity evaluation with L929 cells shows higher cell viability of the Mg−6Zn−0.3Mn−0.5Ca alloy compared to Mg−6Zn−0.3Mn and Mg−6Zn−0.3Mn−0.2Ca alloys.The antibacterial activity against Staphylococcus aureus is enhanced with increasing the Ca content due to its physicochemical and biological performance in bone repairing process.展开更多
Accelerated environmental(hygrothermal)exposure experiments are performed on organic paints coated on commercial die-cast AZ91D Mg alloys to investigate the effects of contamination on blistering.Specifically,artifici...Accelerated environmental(hygrothermal)exposure experiments are performed on organic paints coated on commercial die-cast AZ91D Mg alloys to investigate the effects of contamination on blistering.Specifically,artificial human perspiration spray is used to contaminate the substrate surface.Blistering occurred only for paints that are spread on surfaces with the perspiration present.More blisters gradually form at longer test times,and the volume of blistering increases.Scanning electron microscopy indicates that blistering is initiated by contamination and/or substrate corrosion at the interface of the organic paints and the substrate.Blistering is characterized for two samples exposed to the hygrothermal environments for various times,and is found to be initially empty in the early stages.Hydrophilic chloride contaminants from the perspiration lead to in situ adhesion loss.Simultaneously,the paints volume expands,and the associated compressive stress causes it to bulge.After long-term test exposure,chloride anions corrode the substrate under the films,and MgO,Mg(OH)_(2),and Mg_(2)(OH)_(3)Cl corrosion products fill the blisters.Finally,a model of blistering evolution is discussed.展开更多
The corrosion mechanism of 510L low alloy steel treated by acid-cleaned surface(ACS)and eco-pickled surface(EPS)techniques in three simulated solutions(S0:atmospheric environment;S1:soil environment;S2:industrial envi...The corrosion mechanism of 510L low alloy steel treated by acid-cleaned surface(ACS)and eco-pickled surface(EPS)techniques in three simulated solutions(S0:atmospheric environment;S1:soil environment;S2:industrial environment)and the influence of interaction between different corrosive anions on corrosion were investigated.The results show that the total corrosion rates of samples in three simulated solutions were in order of S2>S0>S1,which is simultaneously correlated with initial corrosion dissolution processes as well as after the formation of corrosion products.HCO3−will inhibit the initial corrosion owing to the formation of films,whereas HSO3−will accelerate the dissolutions of the matrix based on the synergistic action of HSO3−and Cl−.On the other hand,there is no significant difference in corrosion rates between the samples treated by ACS and EPS techniques.The EPS technique that is safe,reusable and environmentally friendly can be further widely used in future work.展开更多
Low alloy steels are widely used in bridges,construction,chemical and various equipment and metal components due to their low cost and excellent mechanical strength.Information in the literature related to the prepara...Low alloy steels are widely used in bridges,construction,chemical and various equipment and metal components due to their low cost and excellent mechanical strength.Information in the literature related to the preparation,advantages and disadvantages,and applications along with research progress of various types of protective coatings suitable for low-alloy steel surfaces is reviewed,while a conclusive and comparative analysis is also afforded to the numerous factors influencing the protective ability of coatings.The characteristics of coatings drawn from the latest published literature are discussed and suggest that the modification of traditional metal coatings and the development of new organic coatings under the consideration of environmental protection,low cost,simplicity and large-scale industrial application are simultaneously proceeding,which holds promise for improving the understanding of corrosion protection in related fields and helps to address some of the limitations identified with more conventional coating techniques.展开更多
Surface nanocrystallization of pure Fe was performed using an improved surface treatment process. The phase transformation and Si infiltration depth of the pure Fe before and after surface mechanical attrition treatme...Surface nanocrystallization of pure Fe was performed using an improved surface treatment process. The phase transformation and Si infiltration depth of the pure Fe before and after surface mechanical attrition treatment (SMAT) were compared by X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results indicated that nanocrystallization of Fe surface was achieved using SMAT, which resulted in deeper penetration of Si. Prolonging time of SMAT and Si infiltration also resulted in increasing microhardness, with the hardness first increasing with increasing distance from the surface and then decreasing. Furthermore, longer Si infiltration time, nanocrystallization of Si and longer SMAT time resulted in higher saturation magnetization (MS). The greatest Si penetration depth (150 μm), maximum hardness (280 HV), and maximum MS (1.849 × 10^6 A/m) were achieved after SMAT for 45 min and Si infiltration for 9 h. The interaction between adjacent grains after surface nanocrystallization leads to a region of the magnetic domain wall structure located at the grain boundary, which causes the remanence enhancement effect.展开更多
基金financially supported by the National Natural Science Foundation of China(52372191)the Natural Science Foundation of Xiamen,China(3502Z202372036)+1 种基金the China Postdoctoral Science Foundation(2022TQ0282)the support of the High-Performance Computing Center(HPCC)at Harbin Institute of Technology on first-principles calculations。
文摘It is challenging for aqueous Zn-ion batteries(ZIBs)to achieve comparable low-temperature(low-T)performance due to the easy-frozen electrolyte and severe Zn dendrites.Herein,an aqueous electrolyte with a low freezing point and high ionic conductivity is proposed.Combined with molecular dynamics simulation and multi-scale interface analysis(time of flight secondary ion mass spectrometry threedimensional mapping and in-situ electrochemical impedance spectroscopy method),the temperature independence of the V_(2)O_(5)cathode and Zn anode is observed to be opposite.Surprisingly,dominated by the solvent structure of the designed electrolyte at low temperatures,vanadium dissolution/shuttle is significantly inhibited,and the zinc dendrites caused by this electrochemical crosstalk are greatly relieved,thus showing an abnormal temperature inversion effect.Through the disclosure and improvement of the above phenomena,the designed Zn||V_(2)O_(5)full cell delivers superior low-T performance,maintaining almost 99%capacity retention after 9500 cycles(working more than 2500 h)at-20°C.This work proposes a kind of electrolyte suitable for low-T ZIBs and reveals the inverse temperature dependence of the Zn anode,which might offer a novel perspective for the investigation of low-T aqueous battery systems.
基金the financial supports from the Natural Science Foundation of Shanxi Province, China (201901D211310)the National Natural Science Foundation of China (52071227)+2 种基金the Transformation of Scientific and Technological Achievements Programs of Higher Education Institutions in Shanxi, China (TSTAP)Science and Technology Major Projects of Shanxi Province, China (20191102004, 201903D111008)the Central Special Funds Guiding the Development of Local Science and Technology, China (YDZX20181400002967)
文摘To find suitable biodegradable materials for implant applications,Mg−6Zn−0.3Mn−xCa(x=0,0.2 and 0.5,wt.%)alloys were prepared by semi-continuous casting followed by hot-extrusion technique.The microstructure and mechanical properties of Mg−6Zn−0.3Mn−xCa alloys were investigated using the optical microscope,scanning electron microscope and tensile testing.Results indicated that minor Ca addition can slightly refine grains of the extruded Mg−6Zn−0.3Mn alloy and improve its strength.When 0.2 wt.%and 0.5 wt.%Ca were added,the grain sizes of the as-extruded alloys were refined from 4.8 to 4.6 and 4.2μm,respectively.Of the three alloys studied,the alloy with 0.5 wt.%Ca exhibits better combined mechanical properties with the ultimate tensile strength and elongation of 334 MPa and 20.3%.The corrosion behaviour,cell viability and antibacterial activities of alloys studied were also evaluated.Increasing Ca content deteriorates the corrosion resistance of alloys due to the increase of amount of effective cathodic sites caused by the formation of more Ca2Mg6Zn3 phases.Cytotoxicity evaluation with L929 cells shows higher cell viability of the Mg−6Zn−0.3Mn−0.5Ca alloy compared to Mg−6Zn−0.3Mn and Mg−6Zn−0.3Mn−0.2Ca alloys.The antibacterial activity against Staphylococcus aureus is enhanced with increasing the Ca content due to its physicochemical and biological performance in bone repairing process.
基金the National Natural Science Foundation of China(grant no.51374151)the Natural Science Foundation of Shanxi Province(grant No.2015011038)+2 种基金the PhD Scientific Research Startup Foundation(grant no.20152011)Youth Scientific Research Foundation(grant no.20153003)of TYUSTthe China Postdoctoral Science Foundation(grant no.20100471586)for funding provided in support of this work.
文摘Accelerated environmental(hygrothermal)exposure experiments are performed on organic paints coated on commercial die-cast AZ91D Mg alloys to investigate the effects of contamination on blistering.Specifically,artificial human perspiration spray is used to contaminate the substrate surface.Blistering occurred only for paints that are spread on surfaces with the perspiration present.More blisters gradually form at longer test times,and the volume of blistering increases.Scanning electron microscopy indicates that blistering is initiated by contamination and/or substrate corrosion at the interface of the organic paints and the substrate.Blistering is characterized for two samples exposed to the hygrothermal environments for various times,and is found to be initially empty in the early stages.Hydrophilic chloride contaminants from the perspiration lead to in situ adhesion loss.Simultaneously,the paints volume expands,and the associated compressive stress causes it to bulge.After long-term test exposure,chloride anions corrode the substrate under the films,and MgO,Mg(OH)_(2),and Mg_(2)(OH)_(3)Cl corrosion products fill the blisters.Finally,a model of blistering evolution is discussed.
基金supported by Key Scientific Research Project in Shanxi Province(Grant Nos.202003D111001 and 202102050201010)Fundamental Research Program of Shanxi Province(Grant No.202103021223293)+3 种基金National Natural Science Foundation of China(Grant No.52071227)Scientific Research Fund of Taiyuan University of Science and Technology(Grant No.20202044)Award Fund for Outstanding Doctors in Shanxi Province(Grant No.20212041)Postgraduate Education Innovation Project of Shanxi Province(Grant Nos.2022Y686 and 2022Y684).
文摘The corrosion mechanism of 510L low alloy steel treated by acid-cleaned surface(ACS)and eco-pickled surface(EPS)techniques in three simulated solutions(S0:atmospheric environment;S1:soil environment;S2:industrial environment)and the influence of interaction between different corrosive anions on corrosion were investigated.The results show that the total corrosion rates of samples in three simulated solutions were in order of S2>S0>S1,which is simultaneously correlated with initial corrosion dissolution processes as well as after the formation of corrosion products.HCO3−will inhibit the initial corrosion owing to the formation of films,whereas HSO3−will accelerate the dissolutions of the matrix based on the synergistic action of HSO3−and Cl−.On the other hand,there is no significant difference in corrosion rates between the samples treated by ACS and EPS techniques.The EPS technique that is safe,reusable and environmentally friendly can be further widely used in future work.
基金This paper is supported by Key Scientific Research Project in Shanxi Province(Grant Nos.201903D111008 and 202003D111001)National Natural Science Foundation of China(Grant No.52071227)+4 种基金Fundamental Research Program of Shanxi Province(Grant No.202103021223293)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(Grant No.2021L306)Scientific Research Fund of Taiyuan University of Science and Technology(Grant No.20202044)Award Fund for Outstanding Doctors in Shanxi Province(Grant No.20212041)Postgraduate Education Innovation Project of Shanxi Province(Grant Nos.2022Y686 and 2022Y684).
文摘Low alloy steels are widely used in bridges,construction,chemical and various equipment and metal components due to their low cost and excellent mechanical strength.Information in the literature related to the preparation,advantages and disadvantages,and applications along with research progress of various types of protective coatings suitable for low-alloy steel surfaces is reviewed,while a conclusive and comparative analysis is also afforded to the numerous factors influencing the protective ability of coatings.The characteristics of coatings drawn from the latest published literature are discussed and suggest that the modification of traditional metal coatings and the development of new organic coatings under the consideration of environmental protection,low cost,simplicity and large-scale industrial application are simultaneously proceeding,which holds promise for improving the understanding of corrosion protection in related fields and helps to address some of the limitations identified with more conventional coating techniques.
文摘Surface nanocrystallization of pure Fe was performed using an improved surface treatment process. The phase transformation and Si infiltration depth of the pure Fe before and after surface mechanical attrition treatment (SMAT) were compared by X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The results indicated that nanocrystallization of Fe surface was achieved using SMAT, which resulted in deeper penetration of Si. Prolonging time of SMAT and Si infiltration also resulted in increasing microhardness, with the hardness first increasing with increasing distance from the surface and then decreasing. Furthermore, longer Si infiltration time, nanocrystallization of Si and longer SMAT time resulted in higher saturation magnetization (MS). The greatest Si penetration depth (150 μm), maximum hardness (280 HV), and maximum MS (1.849 × 10^6 A/m) were achieved after SMAT for 45 min and Si infiltration for 9 h. The interaction between adjacent grains after surface nanocrystallization leads to a region of the magnetic domain wall structure located at the grain boundary, which causes the remanence enhancement effect.