The tea green leafhopper, Empoasca vitis Gothe, is one of the most serious insect pests of tea plantations in China's Mainland. Over the past decades, this pest has been controlled mainly by spraying pesticides. I...The tea green leafhopper, Empoasca vitis Gothe, is one of the most serious insect pests of tea plantations in China's Mainland. Over the past decades, this pest has been controlled mainly by spraying pesticides. Insecticide applications not only have become less effective in controlling damage, but even more seriously, have caused high levels of toxic residues in teas, which ultimately threatens human health. Therefore, we should seek a safer biological control approach. In the present study, key components of tea shoot volatiles were identified and behaviorally tested as potential leafhopper attractants. The following 13 volatile compounds were identified from aeration samples of tea shoots using gas chromatography-mass spectrometry (GC-MS): (E)-2-hexenal, (Z)-3-hexen-1- ol, (Z)-3-hexenyl acetate, 2-ethyl-1-hexanol, (E)-ocimene, linalool, nonanol, (Z)-butanoic acid, 3-hexenyl ester, decanal, tetradecane, β-caryophyllene, geraniol and hexadecane. In Y-tube olfactometer tests, the following individual compounds were identified: (E)-2- hexenal, (E)-ocimene, (Z)-3-hexenyl acetate and linalool, as well as two synthetic mixtures (called blend 1 and blend 2) elicited significant taxis, with blend 2 being the most attractive. Blend 1 included linalool, (Z)-3-hexen-l-ol and (E)-2-hexenal at a 1: 1:1 ratio, whereas blend 2 was a mixture of eight compounds at the same loading ratio: (E)-2-hexenal, (Z)- 3-hexen-l-ol, (Z)-3-hexenyl acetate, 2-penten-l-ol, (E)-2-pentenal, pentanol, hexanol and 1-penten-3-ol. In tea fields, the bud-green sticky board traps baited with blend 2, (E)-2- hexenal or hexane captured adults and nymphs of the leafhoppers, with blend 2 being the most attractive, foUowed by (E)-2-hexenal and hexane. Placing sticky traps baited with blend 2 or (E)-2-hexenal in the tea fields significantly reduced leathopper populations. Our results indicate that the bud-green sticky traps baited with tea shoot volatiles can provide a new tool for monitoring and managing the tea leafhopper.展开更多
β-Imidophosphonamido ligated lutetium alkyl complex(NPNDipp)Lu(CH2Si Me3)2(THF)(NPNDipp = Ph2P(NC6H3iPr2-2,6)2) with the activation of AliBu3 and [Ph3C][B(C6F5)4] exhibited high catalytic activity, medium...β-Imidophosphonamido ligated lutetium alkyl complex(NPNDipp)Lu(CH2Si Me3)2(THF)(NPNDipp = Ph2P(NC6H3iPr2-2,6)2) with the activation of AliBu3 and [Ph3C][B(C6F5)4] exhibited high catalytic activity, medium syndio-(rr = 66%) but remarkably high 3,4-regioselectivity for the polymerization of β-myrcene(MY). In sharp contrast, high isotactic 3,4-polymyrcene(PMY)(mm = 95%) was obtained by the precursor(NPN^Et)Lu(CH2Si Me3)2(THF)(NPN^Et = PPh2(NC6H3^iPr2-2,6)(NC6H4-Et-2)) with less bulky substituents on the N-aryl ring.展开更多
文摘The tea green leafhopper, Empoasca vitis Gothe, is one of the most serious insect pests of tea plantations in China's Mainland. Over the past decades, this pest has been controlled mainly by spraying pesticides. Insecticide applications not only have become less effective in controlling damage, but even more seriously, have caused high levels of toxic residues in teas, which ultimately threatens human health. Therefore, we should seek a safer biological control approach. In the present study, key components of tea shoot volatiles were identified and behaviorally tested as potential leafhopper attractants. The following 13 volatile compounds were identified from aeration samples of tea shoots using gas chromatography-mass spectrometry (GC-MS): (E)-2-hexenal, (Z)-3-hexen-1- ol, (Z)-3-hexenyl acetate, 2-ethyl-1-hexanol, (E)-ocimene, linalool, nonanol, (Z)-butanoic acid, 3-hexenyl ester, decanal, tetradecane, β-caryophyllene, geraniol and hexadecane. In Y-tube olfactometer tests, the following individual compounds were identified: (E)-2- hexenal, (E)-ocimene, (Z)-3-hexenyl acetate and linalool, as well as two synthetic mixtures (called blend 1 and blend 2) elicited significant taxis, with blend 2 being the most attractive. Blend 1 included linalool, (Z)-3-hexen-l-ol and (E)-2-hexenal at a 1: 1:1 ratio, whereas blend 2 was a mixture of eight compounds at the same loading ratio: (E)-2-hexenal, (Z)- 3-hexen-l-ol, (Z)-3-hexenyl acetate, 2-penten-l-ol, (E)-2-pentenal, pentanol, hexanol and 1-penten-3-ol. In tea fields, the bud-green sticky board traps baited with blend 2, (E)-2- hexenal or hexane captured adults and nymphs of the leafhoppers, with blend 2 being the most attractive, foUowed by (E)-2-hexenal and hexane. Placing sticky traps baited with blend 2 or (E)-2-hexenal in the tea fields significantly reduced leathopper populations. Our results indicate that the bud-green sticky traps baited with tea shoot volatiles can provide a new tool for monitoring and managing the tea leafhopper.
基金financially supported by the National Natural Science Foundation of China(Nos.21104074 and 51321062)
文摘β-Imidophosphonamido ligated lutetium alkyl complex(NPNDipp)Lu(CH2Si Me3)2(THF)(NPNDipp = Ph2P(NC6H3iPr2-2,6)2) with the activation of AliBu3 and [Ph3C][B(C6F5)4] exhibited high catalytic activity, medium syndio-(rr = 66%) but remarkably high 3,4-regioselectivity for the polymerization of β-myrcene(MY). In sharp contrast, high isotactic 3,4-polymyrcene(PMY)(mm = 95%) was obtained by the precursor(NPN^Et)Lu(CH2Si Me3)2(THF)(NPN^Et = PPh2(NC6H3^iPr2-2,6)(NC6H4-Et-2)) with less bulky substituents on the N-aryl ring.