Uncertainties in the aerodynamic performance of compressors,introduced by manufacturing variations,have received more and more attentions in recent years.The deviation model plays a crucial role in evaluating this unc...Uncertainties in the aerodynamic performance of compressors,introduced by manufacturing variations,have received more and more attentions in recent years.The deviation model plays a crucial role in evaluating this uncertainty and facilitating robust design.However,current deviation models with a few variables cannot simultaneously achieve a precise geometric approximation of deviation and provide an accurate assessment of performance uncertainty.This paper introduces a novel deviation modeling method named Nested Principal Component Analysis(NPCA)to break this tradeoff.In this method,both geometry-based and performance-based modes are utilized to describe manufacturing variations.By considering aerodynamic sensitivity,surface deformations that significantly impact aerodynamic performance can be extracted for deviation modeling.To demonstrate the superiority of this newly proposed method,ninety-eight newly manufactured compressor rotor blades were measured using a coordinate measurement machine,and both NPCA and Principal Component Analysis(PCA)were employed to model the real manufacturing variations.The results indicate that,in comparison to the PCA method,the NPCA method achieves an equivalent level of accuracy in geometric reconstruction and evaluation of mean performance.Furthermore,the same level of accuracy can be obtained with eight NPCA modes and fifty PCA modes when assessing the scatter in aerodynamic performance.Finally,the working mechanism of the NPCA method for accurate uncertainty quantification was further investigated.展开更多
Manufacture variations can greatly increase the performance variability of compressor blades. Current robust design optimization methods have a critical role in reducing the adverse impact of the variations, but can b...Manufacture variations can greatly increase the performance variability of compressor blades. Current robust design optimization methods have a critical role in reducing the adverse impact of the variations, but can be affected by errors if the assumptions of the deviation models and distribution parameters are inaccurate. A new approach for robust design optimization without the employment of the deviation models is proposed. The deviation package method and the interval estimation method are exploited in this new approach. Simultaneously, a stratified strategy is used to reduce the computational cost and assure the optimization accuracy. The test case employed for this study is a typical transonic compressor blade profile, which resembles most of the manufacture features of modern compressor blades. A set of 96 newly manufactured blades was measured using a coordinate measurement machine to obtain the manufacture variations and produce a deviation package. The optimization results show that the scatter of the aerodynamic performance for the optimal robust design is 20% less than the baseline value. By comparing the optimization results obtained from the deviation package method with those obtained from widely-used methods employing the deviation model, the efficiency and accuracy of the deviation package method are demonstrated. Finally, the physical mechanisms that control the robustness of different designs were further investigated, and some statistical laws of robust design were extracted.展开更多
Variable cycle engine(VCE)is one of the most promising technologies for the next-generation aircraft,the matching of different components in the compression system is a key difficulty VCE faced.To investigate the comp...Variable cycle engine(VCE)is one of the most promising technologies for the next-generation aircraft,the matching of different components in the compression system is a key difficulty VCE faced.To investigate the component matching mechanisms in the VCE compression system,an advanced throughflow program is employed to calculate the characteristic lines of each component,and a zero-dimensional method is developed to cap-ture the component performance deviation during the coupling working process.By setting the compressor stall and choke conditions as the boundary,the operation range of the compression system isfirst clarified,and the aerodynamic performance in the operation zone is discussed,thus providing a theoretical basis for optimization of the engine operating con-trol scheme.Results show that the efficiency of the coreflow is optimum at the left-bottom corner of the operation region,while the total pressure ratio peaks at the right-top area,hence a balance is needed when deciding the matching point.Regulations of component control pa-rameters will change the position of the operation zone,as well as the corresponding aerody-namic performance.Decreasing the core driven fan stage rotating speed can improve the total bypass ratio,yet the total pressure ratio of the coreflow will be decreased.Closing the core driven fan stage inlet guide vane can increase the total bypass ratio without changing the core flow aerodynamic performance significantly.The bypass ratio of the compression system can also be increased by increasing the fan stall margin or decreasing its rotating speed,both ways will decrease the total pressure ratio of the core flow.Results of the study will benefit the variable cycle engine design process in operation point evaluation and thermodynamic cycle optimization.展开更多
It is confirmed that tandem-blade configurations have potential to enlarge the flow turning in two-dimension(2D) studies. However, the potential of tandem blades to enlarge the design space for highly loaded axial com...It is confirmed that tandem-blade configurations have potential to enlarge the flow turning in two-dimension(2D) studies. However, the potential of tandem blades to enlarge the design space for highly loaded axial compressors was rarely investigated in open literatures. The present work aims to show the capability of tandem blades to break the loading limit of conventional blades for highly loaded compressors. The 2D models of the maximum static pressure rise derived in previous work were validated by a large amount experimental data, which showed a good agreement. An E parameter was defined to evaluate the stall margin of compressor based on the theoretical models, which indicated that the tandem blade was able to increase the loading limit of axial compressors. A single-blade stage with a loading coefficient of 0.46(based on the blade tip rotating speed) was designed as the baseline case under the guidance of the E parameter. A tandem-blade stage was then designed by ensuring that the velocity triangles were similar to the single-blade stage. The performances of both stages were investigated experimentally. The results showed that the maximum efficiency of the tandem-blade stage was 92.8%, 1% higher than the single;the stall margin increased from 16.9% to 22.3%. Besides, the maximum pressure rise of tandem rotors was beyond the loading limit of 2D single-blade cascades, which confirmed the potential of tandem blades to break the loading limit of axial compressors.展开更多
In this study,the influence of inter-stage bleeding on the compressor performance and inter-stage flow field of a multistage axial compressor is investigated by both experimental and numerical methods.The experiment i...In this study,the influence of inter-stage bleeding on the compressor performance and inter-stage flow field of a multistage axial compressor is investigated by both experimental and numerical methods.The experiment is conducted on a four-stage low-speed axial compressor,and a specific computational model is built to simulate the experiment environment accurately.To illuminate the fluid mechanisms of bleeding effect in detail,both the experiment and the simulation are carried out twice,i.e.,in the first time,the mass flow rate upstream the bleed location is constant under different bleed rate conditions;while in the second time,the mass flow rate downstream the bleed location is constant under different bleed rate conditions.The results demonstrate that inter-stage bleeding has little influence on upstream compressor characteristics,and affects the upstream flow field only in the rear half of the stator.The bleed effect on the downstream flow field is embodied in the variation of an incoming flow profile,an increase as the compressor inlet flow coefficient decreases.Therefore,such an effect is only significant on compressor characteristics at small flow coefficient conditions.In multistage compressors,the variation of compressor characteristics and flow field caused by inter-stage bleeding is the comprehensive result of the bleeding and the variation of the upstream working condition.In addition,the comparison between numerical and experimental results shows that the flow moves towards top half of span through the downstream rotor passage in the numerical simulation,whereas the trend of flow field variation with different bleed rates at the outlet of the downstream rotor and stator is the same with that at the inlet of the downstream rotor in the experiment,which means that the numerical method has overestimated the radial mixing intensity of the flow.展开更多
Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here,we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy cent...Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here,we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy center electron spins, which are characterized by fast quantum gates and long qubit coherence times. By varying the detuning, amplitudes, and phase difference of lasers applied to a nitrogen-vacancy center, one can directly realize an arbitrary single-qubit holonomic gate on the spin.Meanwhile, with the help of cavity-assisted interactions, a nontrivial two-qubit holonomic quantum gate can also be induced. The distinct merit of this scheme is that all the quantum gates are obtained via an all-optical geometric manipulation of the solid-state spins. Therefore, our scheme opens the possibility for robust quantum computation using solid-state spins in an all-optical way.展开更多
The variable cycle engine is distinguished by its highly adjustable compression system,whose aerodynamic characteristic is extremely complex.To explore the regulation range of a double bypass engine compression system...The variable cycle engine is distinguished by its highly adjustable compression system,whose aerodynamic characteristic is extremely complex.To explore the regulation range of a double bypass engine compression system,a multi-dimensional analysis method is developed,through which the coupling mechanism between the compressor component and the bypass is examined.The operation zones of the compressor components and the bypass system are proposed,and the operation range of the compression system is obtained by calculating the overlapping part of the operation zones.The results show that in the double bypass mode,there exists a minimum mode selector valve area and a minimum core driven fan stage stall margin that ensures a feasible bypass flow,the two parameters correspond to each other.Under the given fan and core driven fan stage conditions,the maximum value of the inner bypass ratio is restricted by the upper limit of the forward variable area bypass injector and the maximum Mach number in the total bypass,while the minimum value of the inner bypass ratio depends on the lower limit of the forward variable area bypass injector geometry and the system recirculation margin.The single bypass mode is a unique condition of the double bypass mode,as the operation zone of the compressor component degenerates from a two-dimensional surface to a straight line.There are multiple bypass states available in the single bypass mode,while the regulation range of the bypass ratio is jointly restricted by the operation range of the high pressure compressor and the aerodynamic boundary of the forward variable area bypass injector.展开更多
Particle Image Velocimetry(PIV)is a well-developed and contactless technique in experimental fluid mechanics,but the strong velocity gradient and streamline curvature near the wall substantially limits its accuracy im...Particle Image Velocimetry(PIV)is a well-developed and contactless technique in experimental fluid mechanics,but the strong velocity gradient and streamline curvature near the wall substantially limits its accuracy improvement.This paper presents a data processing procedure combining conventional PIV and newly developed Mirror Interchange(MI)based Interface-PIV for the measurement of the boundary layer parameter development in the blade leading edge region.The synthetic particle images are used to analyze the measurement errors in the entire procedure.Overall,three types of errors,namely the errors caused by the Window Deformation Iterative Multigrid(WIDIM)algorithm,the discrete data interpolation and integration,and the wall offset uncertainty,comprise the main measurement error.Specifically,the errors due to the discrete data interpolation and integration and the WIDIM algorithm comprise the mean bias,which can be corrected through the error analysis method proposed in the present work.Meanwhile,the errors due to the WIDIM algorithm and the wall offset uncertainty contribute to the measurement uncertainty.Computational fluid dynamics-based synthetic particle flows were generated to verify the newly developed PIV data processing procedure and the corresponding error analysis method.Results showed that the data processing method could improve the accuracy of PIV measurements for boundary layer flows with high curvature and acceleration and even with significant flow separation bubbles.Finally,the data processing method is also applied in a PIV experiment to investigate the boundary layer flows around a compressor blade leading edge,and several credible boundary flow parameters were obtained.展开更多
基金funded by the Science Center for Gas Turbine Project,China(Nos.P2022-A-II-002-001,P2022-B-II-002-001)the National Natural Science Foundation of China(No.52206038)
文摘Uncertainties in the aerodynamic performance of compressors,introduced by manufacturing variations,have received more and more attentions in recent years.The deviation model plays a crucial role in evaluating this uncertainty and facilitating robust design.However,current deviation models with a few variables cannot simultaneously achieve a precise geometric approximation of deviation and provide an accurate assessment of performance uncertainty.This paper introduces a novel deviation modeling method named Nested Principal Component Analysis(NPCA)to break this tradeoff.In this method,both geometry-based and performance-based modes are utilized to describe manufacturing variations.By considering aerodynamic sensitivity,surface deformations that significantly impact aerodynamic performance can be extracted for deviation modeling.To demonstrate the superiority of this newly proposed method,ninety-eight newly manufactured compressor rotor blades were measured using a coordinate measurement machine,and both NPCA and Principal Component Analysis(PCA)were employed to model the real manufacturing variations.The results indicate that,in comparison to the PCA method,the NPCA method achieves an equivalent level of accuracy in geometric reconstruction and evaluation of mean performance.Furthermore,the same level of accuracy can be obtained with eight NPCA modes and fifty PCA modes when assessing the scatter in aerodynamic performance.Finally,the working mechanism of the NPCA method for accurate uncertainty quantification was further investigated.
基金funded by the National Science and Technology Major Project, China (No. 2017-II-0001-0013)Science Center for Gas Turbine Project, China (Nos. P2022-A-II-002-001 and P2022-B-II-002-001)。
文摘Manufacture variations can greatly increase the performance variability of compressor blades. Current robust design optimization methods have a critical role in reducing the adverse impact of the variations, but can be affected by errors if the assumptions of the deviation models and distribution parameters are inaccurate. A new approach for robust design optimization without the employment of the deviation models is proposed. The deviation package method and the interval estimation method are exploited in this new approach. Simultaneously, a stratified strategy is used to reduce the computational cost and assure the optimization accuracy. The test case employed for this study is a typical transonic compressor blade profile, which resembles most of the manufacture features of modern compressor blades. A set of 96 newly manufactured blades was measured using a coordinate measurement machine to obtain the manufacture variations and produce a deviation package. The optimization results show that the scatter of the aerodynamic performance for the optimal robust design is 20% less than the baseline value. By comparing the optimization results obtained from the deviation package method with those obtained from widely-used methods employing the deviation model, the efficiency and accuracy of the deviation package method are demonstrated. Finally, the physical mechanisms that control the robustness of different designs were further investigated, and some statistical laws of robust design were extracted.
基金supports of National Natural Science Foundation of China (No.52206038)National Science and Technology Major Project,China (No.Y2022-II-0003-0006)Science Center for Gas Turbine Project (Nos.P2022-B-II-002-001,P2022-A-II-001-001).
文摘Variable cycle engine(VCE)is one of the most promising technologies for the next-generation aircraft,the matching of different components in the compression system is a key difficulty VCE faced.To investigate the component matching mechanisms in the VCE compression system,an advanced throughflow program is employed to calculate the characteristic lines of each component,and a zero-dimensional method is developed to cap-ture the component performance deviation during the coupling working process.By setting the compressor stall and choke conditions as the boundary,the operation range of the compression system isfirst clarified,and the aerodynamic performance in the operation zone is discussed,thus providing a theoretical basis for optimization of the engine operating con-trol scheme.Results show that the efficiency of the coreflow is optimum at the left-bottom corner of the operation region,while the total pressure ratio peaks at the right-top area,hence a balance is needed when deciding the matching point.Regulations of component control pa-rameters will change the position of the operation zone,as well as the corresponding aerody-namic performance.Decreasing the core driven fan stage rotating speed can improve the total bypass ratio,yet the total pressure ratio of the coreflow will be decreased.Closing the core driven fan stage inlet guide vane can increase the total bypass ratio without changing the core flow aerodynamic performance significantly.The bypass ratio of the compression system can also be increased by increasing the fan stall margin or decreasing its rotating speed,both ways will decrease the total pressure ratio of the core flow.Results of the study will benefit the variable cycle engine design process in operation point evaluation and thermodynamic cycle optimization.
基金the support of National Natural Science Foundation of China(Nos.51806004 and 51790511)National Science and Technology Major Project,China(No.2017-Ⅱ-0001-0013)。
文摘It is confirmed that tandem-blade configurations have potential to enlarge the flow turning in two-dimension(2D) studies. However, the potential of tandem blades to enlarge the design space for highly loaded axial compressors was rarely investigated in open literatures. The present work aims to show the capability of tandem blades to break the loading limit of conventional blades for highly loaded compressors. The 2D models of the maximum static pressure rise derived in previous work were validated by a large amount experimental data, which showed a good agreement. An E parameter was defined to evaluate the stall margin of compressor based on the theoretical models, which indicated that the tandem blade was able to increase the loading limit of axial compressors. A single-blade stage with a loading coefficient of 0.46(based on the blade tip rotating speed) was designed as the baseline case under the guidance of the E parameter. A tandem-blade stage was then designed by ensuring that the velocity triangles were similar to the single-blade stage. The performances of both stages were investigated experimentally. The results showed that the maximum efficiency of the tandem-blade stage was 92.8%, 1% higher than the single;the stall margin increased from 16.9% to 22.3%. Besides, the maximum pressure rise of tandem rotors was beyond the loading limit of 2D single-blade cascades, which confirmed the potential of tandem blades to break the loading limit of axial compressors.
基金the support of the National Natural Science Foundation of China(Nos.51806004,51790511)the National Science and Technology Major Project,China(No.2017-Ⅱ-0001-0013)。
文摘In this study,the influence of inter-stage bleeding on the compressor performance and inter-stage flow field of a multistage axial compressor is investigated by both experimental and numerical methods.The experiment is conducted on a four-stage low-speed axial compressor,and a specific computational model is built to simulate the experiment environment accurately.To illuminate the fluid mechanisms of bleeding effect in detail,both the experiment and the simulation are carried out twice,i.e.,in the first time,the mass flow rate upstream the bleed location is constant under different bleed rate conditions;while in the second time,the mass flow rate downstream the bleed location is constant under different bleed rate conditions.The results demonstrate that inter-stage bleeding has little influence on upstream compressor characteristics,and affects the upstream flow field only in the rear half of the stator.The bleed effect on the downstream flow field is embodied in the variation of an incoming flow profile,an increase as the compressor inlet flow coefficient decreases.Therefore,such an effect is only significant on compressor characteristics at small flow coefficient conditions.In multistage compressors,the variation of compressor characteristics and flow field caused by inter-stage bleeding is the comprehensive result of the bleeding and the variation of the upstream working condition.In addition,the comparison between numerical and experimental results shows that the flow moves towards top half of span through the downstream rotor passage in the numerical simulation,whereas the trend of flow field variation with different bleed rates at the outlet of the downstream rotor and stator is the same with that at the inlet of the downstream rotor in the experiment,which means that the numerical method has overestimated the radial mixing intensity of the flow.
基金supported by the National Basic Research Program of China (Grant No. 2013CB921804)the National Key Research and Development Program of China (Grant No. 2016YFA0301803)the Education Department of Anhui Province (Grant No. KJ2015A299)
文摘Holonomic quantum computation is a quantum computation strategy that promises some built-in noise-resilience features. Here,we propose a scheme for nonadiabatic holonomic quantum computation with nitrogen-vacancy center electron spins, which are characterized by fast quantum gates and long qubit coherence times. By varying the detuning, amplitudes, and phase difference of lasers applied to a nitrogen-vacancy center, one can directly realize an arbitrary single-qubit holonomic gate on the spin.Meanwhile, with the help of cavity-assisted interactions, a nontrivial two-qubit holonomic quantum gate can also be induced. The distinct merit of this scheme is that all the quantum gates are obtained via an all-optical geometric manipulation of the solid-state spins. Therefore, our scheme opens the possibility for robust quantum computation using solid-state spins in an all-optical way.
基金co-supported by the National Natural Science Foundation of China(No.52206038)the National Science and Technology Major Project,China(No.Y2022-Ⅱ-0003)the Science Center for Gas Turbine Project,China(Nos.P2022-A-Ⅱ-001-001 and P2022-B-Ⅱ-002-001).
文摘The variable cycle engine is distinguished by its highly adjustable compression system,whose aerodynamic characteristic is extremely complex.To explore the regulation range of a double bypass engine compression system,a multi-dimensional analysis method is developed,through which the coupling mechanism between the compressor component and the bypass is examined.The operation zones of the compressor components and the bypass system are proposed,and the operation range of the compression system is obtained by calculating the overlapping part of the operation zones.The results show that in the double bypass mode,there exists a minimum mode selector valve area and a minimum core driven fan stage stall margin that ensures a feasible bypass flow,the two parameters correspond to each other.Under the given fan and core driven fan stage conditions,the maximum value of the inner bypass ratio is restricted by the upper limit of the forward variable area bypass injector and the maximum Mach number in the total bypass,while the minimum value of the inner bypass ratio depends on the lower limit of the forward variable area bypass injector geometry and the system recirculation margin.The single bypass mode is a unique condition of the double bypass mode,as the operation zone of the compressor component degenerates from a two-dimensional surface to a straight line.There are multiple bypass states available in the single bypass mode,while the regulation range of the bypass ratio is jointly restricted by the operation range of the high pressure compressor and the aerodynamic boundary of the forward variable area bypass injector.
基金funded by the National Natural Science Foundation of China(Nos.51790511 and 51806004)the National Science and Technology Major Project,China(No.2017-II-0001-0013).
文摘Particle Image Velocimetry(PIV)is a well-developed and contactless technique in experimental fluid mechanics,but the strong velocity gradient and streamline curvature near the wall substantially limits its accuracy improvement.This paper presents a data processing procedure combining conventional PIV and newly developed Mirror Interchange(MI)based Interface-PIV for the measurement of the boundary layer parameter development in the blade leading edge region.The synthetic particle images are used to analyze the measurement errors in the entire procedure.Overall,three types of errors,namely the errors caused by the Window Deformation Iterative Multigrid(WIDIM)algorithm,the discrete data interpolation and integration,and the wall offset uncertainty,comprise the main measurement error.Specifically,the errors due to the discrete data interpolation and integration and the WIDIM algorithm comprise the mean bias,which can be corrected through the error analysis method proposed in the present work.Meanwhile,the errors due to the WIDIM algorithm and the wall offset uncertainty contribute to the measurement uncertainty.Computational fluid dynamics-based synthetic particle flows were generated to verify the newly developed PIV data processing procedure and the corresponding error analysis method.Results showed that the data processing method could improve the accuracy of PIV measurements for boundary layer flows with high curvature and acceleration and even with significant flow separation bubbles.Finally,the data processing method is also applied in a PIV experiment to investigate the boundary layer flows around a compressor blade leading edge,and several credible boundary flow parameters were obtained.