In the paper we obtain vector-valued inequalities for Calderon-Zygmund operator, simply CZO on Herz space and weak Herz space. In particular, we obtain vector-valued inequalities for CZO on L^q(R^d,|x|^α d μ)spa...In the paper we obtain vector-valued inequalities for Calderon-Zygmund operator, simply CZO on Herz space and weak Herz space. In particular, we obtain vector-valued inequalities for CZO on L^q(R^d,|x|^α d μ)space, with 1〈q〈∞,-n〈α〈n(q-1),and on L^1,∞ (R^d,|x|^α d μ)space,with -n〈α〈0.展开更多
Let T be an anisotropic Calderón-Zygmund operator andφ:R^n×[0,∞)→[0,∞)be an anisotropic Musielak-Orlicz function withφ(x,·)being an Orlicz function andφ(·,t)being a Muckenhoupt A∞(A)weight.I...Let T be an anisotropic Calderón-Zygmund operator andφ:R^n×[0,∞)→[0,∞)be an anisotropic Musielak-Orlicz function withφ(x,·)being an Orlicz function andφ(·,t)being a Muckenhoupt A∞(A)weight.In this paper,our goal is to study two boundedness theorems for commutators of anisotropic Calderon-Zygmund operators.Precisely,when b∈BMOw(R^n,A)(a proper subspace of anisotropic bounded mean oscillation space BMO(R^n,A)),the commutator[b,T]is bounded from anisotropic weighted Hardy space H^1ω(R^n,A)to weighted Lebesgue space L^1ω(R^n)and when b∈BMO(R^n)(bounded mean oscillation space),the commutator[b,T]is bounded on Musielak-Orlicz space L^φ(R^n),which are extensions of the isotropic setting.展开更多
Anisotropy is a common attribute of the nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathemat...Anisotropy is a common attribute of the nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics,can be expressed by a fairly general discrete group of dilations where A is a real matrix with all its elgenvalues A satisfy . The aim of this article is to study a general class of anisotropic function spaces, some properties and applications of these spaces. Let be an anisotropic p-growth function with . The purpose of this article is to find an appropriate general space which includes weak Hardy space of Fefferman and Soria, weighted weak Hardy space of Quek and Yang, and anisotropic weak Hardy space of Ding and Lan. For this reason, we introduce the anisotropic weak Hardy space of Musielak-Orlicz type and obtain its atomic characterization. As applications, we further obtain an interpolation theorem adapted to and the boundedness of the anisotropic Calder6n-Zygmund operator from. It is worth mentioning that the superposition principle adapted to the weak Musielak-Orlicz function space, which is an extension of a result of E. M. Stein, M. Taibleson and G. Weiss, plays an important role in the proofs of the atomic decomposition of and the interpolation theorem.展开更多
文摘In the paper we obtain vector-valued inequalities for Calderon-Zygmund operator, simply CZO on Herz space and weak Herz space. In particular, we obtain vector-valued inequalities for CZO on L^q(R^d,|x|^α d μ)space, with 1〈q〈∞,-n〈α〈n(q-1),and on L^1,∞ (R^d,|x|^α d μ)space,with -n〈α〈0.
基金supported by the “Basic Innovation” Program of Graduate Students of Guangzhou University(2018GDJC-D01)the second author is supported by the National Natural Science Foundation of China(11861062,11661075 and 11561065)the third author is supported by the the National Natural Science Foundation of China(11671414).
文摘Let T be an anisotropic Calderón-Zygmund operator andφ:R^n×[0,∞)→[0,∞)be an anisotropic Musielak-Orlicz function withφ(x,·)being an Orlicz function andφ(·,t)being a Muckenhoupt A∞(A)weight.In this paper,our goal is to study two boundedness theorems for commutators of anisotropic Calderon-Zygmund operators.Precisely,when b∈BMOw(R^n,A)(a proper subspace of anisotropic bounded mean oscillation space BMO(R^n,A)),the commutator[b,T]is bounded from anisotropic weighted Hardy space H^1ω(R^n,A)to weighted Lebesgue space L^1ω(R^n)and when b∈BMO(R^n)(bounded mean oscillation space),the commutator[b,T]is bounded on Musielak-Orlicz space L^φ(R^n),which are extensions of the isotropic setting.
文摘Anisotropy is a common attribute of the nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics,can be expressed by a fairly general discrete group of dilations where A is a real matrix with all its elgenvalues A satisfy . The aim of this article is to study a general class of anisotropic function spaces, some properties and applications of these spaces. Let be an anisotropic p-growth function with . The purpose of this article is to find an appropriate general space which includes weak Hardy space of Fefferman and Soria, weighted weak Hardy space of Quek and Yang, and anisotropic weak Hardy space of Ding and Lan. For this reason, we introduce the anisotropic weak Hardy space of Musielak-Orlicz type and obtain its atomic characterization. As applications, we further obtain an interpolation theorem adapted to and the boundedness of the anisotropic Calder6n-Zygmund operator from. It is worth mentioning that the superposition principle adapted to the weak Musielak-Orlicz function space, which is an extension of a result of E. M. Stein, M. Taibleson and G. Weiss, plays an important role in the proofs of the atomic decomposition of and the interpolation theorem.