期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
BOUNDEDNESS OF VECTOR-VALUED CALDERN-ZYGMUND OPERATORS ON HERZ SPACES WITH NON-DOUBLING MEASURES
1
作者 baode li Yinsheng Jiang Hui Cao 《Analysis in Theory and Applications》 2007年第2期138-146,共9页
In the paper we obtain vector-valued inequalities for Calderon-Zygmund operator, simply CZO on Herz space and weak Herz space. In particular, we obtain vector-valued inequalities for CZO on L^q(R^d,|x|^α d μ)spa... In the paper we obtain vector-valued inequalities for Calderon-Zygmund operator, simply CZO on Herz space and weak Herz space. In particular, we obtain vector-valued inequalities for CZO on L^q(R^d,|x|^α d μ)space, with 1〈q〈∞,-n〈α〈n(q-1),and on L^1,∞ (R^d,|x|^α d μ)space,with -n〈α〈0. 展开更多
关键词 Herz space weak Herz space non-doubling measure Calderon-Zygmund operator
下载PDF
THE BOUNDEDNESS FOR COMMUTATORS OF ANISOTROPIC CALDERóN-ZYGMUND OPERATORS 被引量:1
2
作者 Jinxia li baode li Jianxun HE 《Acta Mathematica Scientia》 SCIE CSCD 2020年第1期45-58,共14页
Let T be an anisotropic Calderón-Zygmund operator andφ:R^n×[0,∞)→[0,∞)be an anisotropic Musielak-Orlicz function withφ(x,·)being an Orlicz function andφ(·,t)being a Muckenhoupt A∞(A)weight.I... Let T be an anisotropic Calderón-Zygmund operator andφ:R^n×[0,∞)→[0,∞)be an anisotropic Musielak-Orlicz function withφ(x,·)being an Orlicz function andφ(·,t)being a Muckenhoupt A∞(A)weight.In this paper,our goal is to study two boundedness theorems for commutators of anisotropic Calderon-Zygmund operators.Precisely,when b∈BMOw(R^n,A)(a proper subspace of anisotropic bounded mean oscillation space BMO(R^n,A)),the commutator[b,T]is bounded from anisotropic weighted Hardy space H^1ω(R^n,A)to weighted Lebesgue space L^1ω(R^n)and when b∈BMO(R^n)(bounded mean oscillation space),the commutator[b,T]is bounded on Musielak-Orlicz space L^φ(R^n),which are extensions of the isotropic setting. 展开更多
关键词 expansive DILATION Muckenhoupt weight weighted HARDY space Calderón-Zygmund operator COMMUTATOR
下载PDF
Anisotropic weak Hardy spaces of Musielak- Orlicz type and their applications
3
作者 Hui ZHANG Chunyan QI baode li 《Frontiers of Mathematics in China》 SCIE CSCD 2017年第4期993-1022,共30页
Anisotropy is a common attribute of the nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathemat... Anisotropy is a common attribute of the nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics,can be expressed by a fairly general discrete group of dilations where A is a real matrix with all its elgenvalues A satisfy . The aim of this article is to study a general class of anisotropic function spaces, some properties and applications of these spaces. Let be an anisotropic p-growth function with . The purpose of this article is to find an appropriate general space which includes weak Hardy space of Fefferman and Soria, weighted weak Hardy space of Quek and Yang, and anisotropic weak Hardy space of Ding and Lan. For this reason, we introduce the anisotropic weak Hardy space of Musielak-Orlicz type and obtain its atomic characterization. As applications, we further obtain an interpolation theorem adapted to and the boundedness of the anisotropic Calder6n-Zygmund operator from. It is worth mentioning that the superposition principle adapted to the weak Musielak-Orlicz function space, which is an extension of a result of E. M. Stein, M. Taibleson and G. Weiss, plays an important role in the proofs of the atomic decomposition of and the interpolation theorem. 展开更多
关键词 Expansive dilation Muckenhoupt weight weak Hardy space Musielak-Orlicz function atomic decomposition Calderdn-Zygmund operator
原文传递
各向异性函数空间上的多线性算子的估计及其应用
4
作者 邱小丽 齐春燕 +1 位作者 刘雄 李宝德 《中国科学:数学》 CSCD 北大核心 2021年第3期499-512,共14页
设A是Rn上的各向异性伸缩, L是由各向异性Calderón-Zygmund算子生成的一般的多线性算子.本文得到L从加权Lebesgue空间Lwp(Rn)到无权的各向异性Hardy空间HAp (Rn)的有界性.另外,对各向异性Hardy空间H1(Rn)和加权各向异性BMO空间BMOA... 设A是Rn上的各向异性伸缩, L是由各向异性Calderón-Zygmund算子生成的一般的多线性算子.本文得到L从加权Lebesgue空间Lwp(Rn)到无权的各向异性Hardy空间HAp (Rn)的有界性.另外,对各向异性Hardy空间H1(Rn)和加权各向异性BMO空间BMOAw(Rn)得到包含关系:BMOAw(Rn)■(H1A(Rn))*.作为应用,对加权各向异性BMO函数b和各向异性Calderón-Zygmund算子T生成的交换子[T, b],得到‖[T, b](f)‖Lwp(Rn)C‖b‖BMOwA(Rn)‖f‖Lpw(Rn).以上所有结果在经典的各向齐性情形下也是新的. 展开更多
关键词 各向异性 Muckenhoupt权 HARDY空间 多线性算子 CALDERÓN-ZYGMUND算子 交换子
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部