期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Highly Enhanced Visible-Light-Driven Photoelectrochemical Performance of ZnO-Modified In_2S_3 Nanosheet Arrays by Atomic Layer Deposition 被引量:5
1
作者 Ming Li Xinglong Tu +6 位作者 Yunhui Wang Yanjie Su Jing Hu baofang cai Jing Lu Zhi Yang Yafei Zhang 《Nano-Micro Letters》 SCIE EI CAS 2018年第3期79-90,共12页
Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facil... Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity. 展开更多
关键词 In2S3/ZnO HETEROJUNCTION Nanosheet arrays Atomic layer deposition PHOTOELECTROCHEMICAL Water splitting Energy band
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部