Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facil...Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.展开更多
基金sponsored by the National Natural Science Foundation of China (Nos. 51402190, 61574091)Shanghai Sailing Program (18YF1427800)the special funds for theoretical physics of the National Natural Science Foundation of China (No. 11747029)
文摘Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.