期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Bi_(2)S_(3)Nanorods Hosted on rGO Sheets from Pyrolysis of Molecular Precursors for Efficient Li-Ion Storage
1
作者 Zhongshuang li Mengmeng He +7 位作者 Bing Bo Huijuan Wei Yanyan liu Hao Wen Yushan liu Ke Zhang Panke Zhang baojun li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第4期577-585,共9页
Bismuth-based compounds with high capacity and durability are still challenging in Li-ion batteries(LIBs).In this article,Bi_(2)S_(3)nanorods hosted on reduced graphene oxide nanosheets(Bi_(2)S_(3)/rGO,BSG)are success... Bismuth-based compounds with high capacity and durability are still challenging in Li-ion batteries(LIBs).In this article,Bi_(2)S_(3)nanorods hosted on reduced graphene oxide nanosheets(Bi_(2)S_(3)/rGO,BSG)are successfully prepared using molecular precursor pyrolysis strategy.1D nanorod architecture possesses preeminent kinetic characteristics,shortening the ion diffusion path and increasing the contact area between electrode and electrolyte.The large specific surface area and charge polarization of rGO at the interface promote charge transfer.The capacity of material(BSG-400)reaches 558.4 m Ah g^(-1)at 0.2 A g^(-1)after 200 cycles.The anode properties of the composite outperform those of pristine Bi_(2)S_(3).The introduction of graphene enables the interfacial interaction between rGO and Bi_(2)S_(3).The closely contact interface improves the conductivity and lithium storage performances of Bi_(2)S_(3).The regulatory effect of rGO on the electronic density of states and band gap of Bi_(2)S_(3)has been demonstrated by theoretical calculation.The synthetic approach has the advantages of universality,simple operation procedure,and strong repeatability.This research provides some ideas for the preparation of other metal sulfides/rGO nanomaterials and their application in battery research. 展开更多
关键词 Bi_(2)S_(3) Li-ion batteries molecular precursor NANORODS PYROLYSIS reduced graphene oxide
下载PDF
Development of an Analytical Method for Evaluating the Catalytic Active Sites of Titanium Silicalite Zeolite
2
作者 Xiaoyan Huang Yan Xue +3 位作者 Xin Gao baojun li Yiqiang Wen Xiangyu Wang 《Journal of Materials Science and Chemical Engineering》 2015年第6期1-6,共6页
A simple, quick, sensitive, accurate and precise method has been developed for evaluating the catalytic active sites of titanium silicalite-1 (TS-1). The catalytic active sites of titanium silicalite zeolite depend on... A simple, quick, sensitive, accurate and precise method has been developed for evaluating the catalytic active sites of titanium silicalite-1 (TS-1). The catalytic active sites of titanium silicalite zeolite depend on the effectively active species (EAS) in TS-1 which react with specific substrates quickly. However, the EAS was hard to be evaluated with conventional instruments and techniques in the past. In this paper, the EAS was formed in TS-1 upon interaction with H2O2, and its presence could be confirmed by UV-vis spectroscopy which has an absorption peak at 385 nm. The absorbance at 385 nm was found to be linearly related to time, and when the absorbance and the increasing rate of absorbance (k) increased, the catalytic performance of TS-1 enhanced. 展开更多
关键词 Effectively Active Species (EAS) Titanium SILICALITE ZEOLITE UV-VIS Spectrum ABSORBANCE
下载PDF
Structure design and electrochemical properties of carbon-based single atom catalysts in energy catalysis:A review
3
作者 Shuqi li Xincheng Lu +8 位作者 Shuling liu Jingjing Zhou Yanyan liu Huanhuan Zhang Ruofan Shen Kang Sun Jianchun Jiang Yongfeng Wang baojun li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期196-236,共41页
Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are ... Single atom catalysts(SACs) possessing regulated electronic structure, high atom utilization, and superior catalytic efficiency have been studied in almost all fields in recent years. Carbon-based supporting SACs are becoming popular materials because of their low cost, high electron conductivity, and controllable surface property. At the stage of catalysts preparation, the rational design of active sites is necessary for the substantial improvement of activity of catalysts. To date, the reported design strategies are mainly about synthesis mechanism and synthetic method. The level of understanding of design strategies of carbon-based single atom catalysts is requiring deep to be paved. The design strategies about manufacturing defects and coordination modulation of catalysts are presented. The design strategies are easy to carry out in the process of drawing up preparation routes. The components of carbon-based SACs can be divided into two parts: active site and carbon skeleton. In this review, the manufacture of defects and coordination modulation of two parts are introduced, respectively. The structure features and design strategies from the active sites and carbon skeletons to the overall catalysts are deeply discussed.Then, the structural design of different nano-carbon SACs is introduced systematically. The characterization of active site and carbon skeleton and the detailed mechanism of reaction process are summarized and analyzed. Next, the applications in the field of electrocatalysis for oxygen conversion and hydrogen conversion are illustrated. The relationships between the superior performance and the structure of active sites or carbon skeletons are discussed. Finally, the conclusion of this review and prospects on the abundant space for further promotion in broader fields are depicted. This review highlights the design and preparation thoughts from the parts to the whole. The detailed and systematic discussion will provide useful guidance for design of SACs for readers. 展开更多
关键词 Carbon materials Coordination chemistry Defective structure Energy catalysis Single atom catalysts
下载PDF
Nickel-Nitrogen-Carbon(Ni-N-C)Electrocatalysts Toward CO_(2)electroreduction to CO:Advances,Optimizations,Challenges,and Prosoects
4
作者 Qingqing Pang Xizheng Fan +7 位作者 Kaihang Sun Kun Xiang baojun li Shufang Zhao Young Dok Kim Qiaoyun liu Zhongyi liu Zhikun Peng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期160-180,共21页
Electrocatalytic reduction of CO_(2)into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems.Con... Electrocatalytic reduction of CO_(2)into high energy-density fuels and value-added chemicals under mild conditions can promote the sustainable cycle of carbon and decrease current energy and environmental problems.Constructing electrocatalyst with high activity,selectivity,stability,and low cost is really matter to realize industrial application of electrocatalytic CO_(2)reduction(ECR).Metal-nitrogen-carbon(M-N-C),especially Ni-N-C,display excellent performance,such as nearly 100%CO selectivity,high current density,outstanding tolerance,etc.,which is considered to possess broad application prospects.Based on the current research status,starting from the mechanism of ECR and the existence form of Ni active species,the latest research progress of Ni-N-C electrocatalysts in CO_(2)electroreduction is systematically summarized.An overview is emphatically interpreted on the regulatory strategies for activity optimization over Ni-N-C,including N coordination modulation,vacancy defects construction,morphology design,surface modification,heteroatom activation,and bimetallic cooperation.Finally,some urgent problems and future prospects on designing Ni-N-C catalysts for ECR are discussed.This review aims to provide the guidance for the design and development of Ni-N-C catalysts with practical application. 展开更多
关键词 active sites CO_(2)reduction electrocatalysis Ni-N-C electrocatalysts optimization strategies
下载PDF
Interface electron collaborative migration of Co–Co3O4/carbon dots:Boosting the hydrolytic dehydrogenation of ammonia borane 被引量:8
5
作者 Han Wu Min Wu +5 位作者 Boyang Wang Xue Yong Yushan liu baojun li Baozhong liu Siyu Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期43-53,I0002,共12页
Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we re... Ammonia borane(AB)is an excellent candidate for the chemical storage of hydrogen.However,its practical utilization for hydrogen production is hindered by the need for expensive noble-metal-based catalysts.Herein,we report Co-Co3O4 nanoparticles(NPs)facilely deposited on carbon dots(CDs)as a highly efficient,robust,and noble-metal-free catalyst for the hydrolysis of AB.The incorporation of the multiinterfaces between Co,Co3O4 NPs,and CDs endows this hybrid material with excellent catalytic activity(rB=6816 mLH2 min^-1 gCo^-1)exceeding that of previous non-noble-metal NP systems and even that of some noble-metal NP systems.A further mechanistic study suggests that these interfacial interactions can affect the electronic structures of interfacial atoms and provide abundant adsorption sites for AB and water molecules,resulting in a low energy barrier for the activation of reactive molecules and thus substantial improvement of the catalytic rate. 展开更多
关键词 Ammonia borane Hydrogen evolution Co-Co3O4 interface Carbon dots Nanoparticles
下载PDF
Co-CoO_x supported onto TiO_(2) coated with carbon as a catalyst for efficient and stable hydrogen generation from ammonia borane 被引量:3
6
作者 Guang Yang Shuyan Guan +3 位作者 Sehrish Mehdi Yanping Fan Baozhong liu baojun li 《Green Energy & Environment》 SCIE CSCD 2021年第2期236-243,共8页
Ammonia borane(AB) can be catalytically hydrolyzed to provide hydrogen at room temperature due to its high potentaial for hydrogen storage. Non-precious metal heterogeneous catalysts have broad application in the fiel... Ammonia borane(AB) can be catalytically hydrolyzed to provide hydrogen at room temperature due to its high potentaial for hydrogen storage. Non-precious metal heterogeneous catalysts have broad application in the field of energy catalysis. In this article, catalysts precursor is obtained from Co-Ti-resorcinol-formaldehyde resin by sol–gel method. Co/TiO_(2)@N-C(CTC) catalyst is prepared by calcining the precursor under high temperature conditions in nitrogen atmosphere. Co-CoO_x/TiO_(2)@N-C(COTC) is generated by the controllable oxidation reaction of CTC. The catalyst can effectively promote the release of hydrogen during the hydrolytic dehydrogenation of AB. High hydrogen generation at a specific rate of 5905 m L min^(-1) g_(Co)^(-1) is achieved at room temperature. The catalyst retains its 85% initial catalytic activity even for its fifth time use in AB hydrolysis. The synergistic effect among Co, Co_(3)O_(4) and TiO_(2) promotes the rate limiting step with dissociation and activation of water molecules by reducing its activation energy. The applied method in this study promotes the development of non-precious metals in catalysis for utilization in clean energy sources. 展开更多
关键词 Ammonia borane COBALT Hydrogen generation N-doped carbon Titanium dioxide
下载PDF
For more and purer hydrogen-the progress and challenges in water gas shift reaction 被引量:2
7
作者 limin Zhou Yanyan liu +8 位作者 Shuling liu Huanhuan Zhang Xianli Wu Ruofan Shen Tao liu Jie Gao Kang Sun baojun li Jianchun Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期363-396,I0010,共35页
The water gas shift(WGS) reaction is a standard reaction that is widely used in industrial hydrogen production and removal of carbon monoxide. The improved catalytic performance of WGS reaction also contributes to amm... The water gas shift(WGS) reaction is a standard reaction that is widely used in industrial hydrogen production and removal of carbon monoxide. The improved catalytic performance of WGS reaction also contributes to ammonia synthesis and other reactions. Advanced catalysts have been developed for both high and low-temperature reactions and are widely used in industry. In recent years, supported metal nanoparticle catalysts have been researched due to their high metal utilization. Low-temperature catalysts have shown promising results, including high selectivity, high shift rates, and higher activity potential. Additionally, significant progress has been made in removing trace CO through the redox reaction in electrolytic cell. This paper reviews the development of WGS reaction catalysts, including the reaction mechanism, catalyst design, and innovative research methods. The catalyst plays a crucial role in the WGS reaction, and this paper provides an instant of catalyst design under different conditions. The progress of catalysts is closely related to the development of advanced characterization techniques.Furthermore, modifying the catalyst surface to enhance activity and significantly increase reaction kinetics is a current research direction. This review goals to stimulate a better understanding of catalyst design, performance optimization, and driving mechanisms, leading to further progress in this field. 展开更多
关键词 Water gas shift reaction Hydrogen production Heterogeneous catalysis Reaction Mechanism Single atomic catalysts
下载PDF
Co_(2)N Nanoparticles Anchored on N-Doped Active Carbon as Catalyst for Oxygen Reduction Reaction in Zinc–Air Battery 被引量:2
8
作者 Xianli Wu Guosheng Han +6 位作者 Hao Wen Yanyan liu Lei Han Xingyu Cui Jiajing Kou baojun li Jianchun Jiang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第3期935-943,共9页
The development of efficient catalytic electrode toward oxygen reduction reaction(ORR)is still a great challenge for the wide use of zinc–air batteries.Herein,Co_(2)N nanoparticles(NPs)anchored on N-doped carbon from... The development of efficient catalytic electrode toward oxygen reduction reaction(ORR)is still a great challenge for the wide use of zinc–air batteries.Herein,Co_(2)N nanoparticles(NPs)anchored on N-doped carbon from cattail were verified with excellent catalytic performances for ORR.The onset and half-wave potentials over the optimal catalyst reach to 0.96 V and 0.84 V,respectively.Current retention rates of 96.8%after 22-h test and 98.8%after running 1600 s were obtained in 1 M methanol solution.Density functional theory simulation proposes an apparently increased electronic states of Co_(2)N in N-doped carbon layer close to the Fermi level.Higher charge density,favorable adsorption,and charge transfer of intermediates originate from the coexistence of Co_(2)N NPs and N atoms in carbon skeleton.The superior catalytic activity of composites also was confirmed in zinc–air batteries.This novel catalytic property and controllable preparation approach of Co_(2)Ncarbon composites provide a promising avenue to fabricate metal-containing catalytically active carbon from biomass. 展开更多
关键词 catalytically active carbon Co2N nanoparticles N-DOPING oxygen reduction reaction zinc–air battery
下载PDF
Engineering Vacancy-Atom Ensembles to Boost Catalytic Activity toward Hydrogen Evolution 被引量:1
9
作者 Ruofan Shen Yanyan liu +8 位作者 Hao Wen Xianli Wu Zhikun Peng Sehrish Mehdi Tao liu Huanhuan Zhang Shuyan Guan Erjun liang baojun li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期325-332,共8页
The dissociation of water is the rate-determining step of several energy-relating reactions due to high energy barrier in homolysis of H-O bond.Herein,engineering vacancy-atom ensembles via injecting oxygen vacancy(V ... The dissociation of water is the rate-determining step of several energy-relating reactions due to high energy barrier in homolysis of H-O bond.Herein,engineering vacancy-atom ensembles via injecting oxygen vacancy(V O)into single facet-exposed TiO_(2)-Pd catalyst to form V_(O)-Pd ensemble is proposed and implemented.The outstanding activity of as-prepared catalyst,1.5-PdTV_(O),toward water dissociation is established with a turnover frequency of 240 min^(−1) in ammonia borane hydrolysis at 298 K.Density functional theory simulation suggests that the V_(O)-Pd ensemble is responsible for the high intrinsic catalytic activity.Water molecules tend to be dissociated on V_(O) sites and ammonia borane molecules on Pd atoms.Those H atoms from water dissociation on V_(O) combine with H atoms from ammonia borane on Pd atoms to generate H_(2).This insights into engineering vacancy-atom ensembles catalysis provide a new avenue to design catalytic materials for important energy chemical reactions. 展开更多
关键词 ammonia borane hydrogen evolution PALLADIUM vacancy-atom ensembles water dissociation
下载PDF
A Catalytic Copper/Cobalt Oxide Interface for Efficient Hydrogen Generation
10
作者 Wenjing Xu Sheli Zhang +5 位作者 Ruofan Shen Zhikun Peng Baozhong liu Jun li Zhanying Zhang baojun li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期1-7,共7页
Metal nanoparticles and metal oxides promisingly provide different catalytic active sites at their interfaces.Constructing high-density interfaces is essential to maximize synergies.Herein,a Cu-Co_(3)O_(4) nanoparticl... Metal nanoparticles and metal oxides promisingly provide different catalytic active sites at their interfaces.Constructing high-density interfaces is essential to maximize synergies.Herein,a Cu-Co_(3)O_(4) nanoparticles interfacial structure produced via pyrolysis and moderate oxidation from metal-organic frameworks has been designed to boost the intrinsic activity.The Cu-Co_(3)O_(4) nanoparticles composites exhibit a turnover frequency of 57.5 min−1 for ammonia borane hydrolysis,far higher than those of monometallic Cu and Co_(3)O_(4) nanoparticles,showing the synergistic effect of Cu and Co_(3)O_(4) nanoparticles at their interface.Density functional theory calculations and in situ Raman spectroscopy reveal the catalytic mechanism of dual active sites,in which Co_(3)O_(4) nanoparticles at Cu-Co_(3)O_(4) interface efficiently bind and activate water molecules and Cu nanoparticles easily activate NH3BH3 molecules.This study opens up a new pathway for achieving high-efficiency noble metal-free catalysts for hydrogen generation and other heterogeneous catalysis. 展开更多
关键词 ammonia borane METAL metal oxide metal-organic framework synergistic effect
下载PDF
Polar O-Co-P Surface for Bimolecular Activation in Catalytic Hydrogen Generation
11
作者 Huanhuan Zhang Ke Zhang +6 位作者 Saima Ashraf Yanping Fan Shuyan Guan Xianli Wu Yushan liu Baozhong liu baojun li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期224-233,共10页
Boron hydrides release an abundant amount of hydrogen in the presence of a suitable catalyst.Accelerating bimolecular activation kinetics is the key to designing cost-effective catalysts for borohydride hydrolysis.In ... Boron hydrides release an abundant amount of hydrogen in the presence of a suitable catalyst.Accelerating bimolecular activation kinetics is the key to designing cost-effective catalysts for borohydride hydrolysis.In this study,the bimolecular activation of a polar O-Co-P site demonstrated superior hydrogen-generation kinetics(turnover frequency,TOF=37 min−1,298 K)and low activation energy(41.0 kJ mol^(−1))close to that of noble-metal-based catalysts.Through a combination of experiments and theoretical calculations,it was revealed that the activated dangling oxygen atom in the Co–O precursor effectively replaced via surface-phosphorization because of strong electronic interactions between the dangling oxygen and P atoms.This substitution modulated the local coordination environment and electronegativity around the surface Co sites and formed a new polar O-Co-P active site for optimizing the activation kinetics of ammonia borane and water.This strategy based on bimolecular activation may create new avenues in the field of catalysis. 展开更多
关键词 bimolecular activation borohydride hydrolysis hydrogen generation noble-metal-free catalysts polar site
下载PDF
Oxygen vacancy promoting artificial atom(RuPd)by d-orbital coupling for efficient water dissociation
12
作者 Ruofan Shen Yanyan liu +9 位作者 Shuling liu Shuyan Guan Huanhuan Zhang Sehrish Mehdi Saima Ashraf Ting-Hui Xiao Erjun liang Jianchun Jiang Yongfeng Wang baojun li 《Nano Research》 SCIE EI CSCD 2024年第8期7045-7052,共8页
Rational design of highly active catalysts for breaking hydrogen-oxygen bonds is of great significance in energy chemical reactions involving water.Herein,an efficient strategy for the artificial atom(RuPd)established... Rational design of highly active catalysts for breaking hydrogen-oxygen bonds is of great significance in energy chemical reactions involving water.Herein,an efficient strategy for the artificial atom(RuPd)established by d-orbital coupling and adjusted by oxygen vacancy(V_(O))is verified for water dissociation.As an experimental verification,the turnover frequency of RuPd-TiO_(2)-VO(RuPdTVO)catalyst in ammonia borane hydrolysis reaches up to 2750 min^(−1)(26,190 min−1 based on metal dispersion)in the absence of alkali,exceeding the highest active catalysts(Rh-based catalysts).The d-orbital coupling effect between Ru and Pd simulates the outer electronic structure of Rh.Electron transfer from V_(O) to(RuPd)constructs an electron-rich state of active sites that further enhances the ability of the artificial atom to dissociate water.This work provides an effective electronic regulation strategy from V_(O) and artificial atom constructed by d-orbital coupling effect for efficient water dissociation. 展开更多
关键词 ammonia borane hydrolysis d-orbital coupling oxygen vacancy artificial atom water dissociation
原文传递
Light-up the white light emission in microscale with a superior deep-blue AIE fiber as wave-guiding source
13
作者 Hao Rao Zicheng liu +7 位作者 Ming Chen Canze Zheng liping Xu Junkai liu Jacky W.Y.Lam baojun li Xianguang Yang Ben Zhong Tang 《Aggregate》 EI CAS 2024年第2期250-260,共11页
The development of high-performance organic blue light-emitting emitters is in urgent to act as an excitation source to contribute the white light generation.On the other hand,the investigation on optical waveguides h... The development of high-performance organic blue light-emitting emitters is in urgent to act as an excitation source to contribute the white light generation.On the other hand,the investigation on optical waveguides have been received increasing attentions because they can manipulate the light propagation accurately in the microscale to boost the optoelectronic and energy conversion applications.In this work,we facilely prepared a deep-blue aggregation-induced emission(AIE)dye,namely TPP-4OMe,which shows high luminescent efficiency,narrow emission band and good stability in the aggregate state.TPP-4OMe can be fabricated as deep-blue AIE microfibers readily with definite morphology and composition.Based on the AIE microfibers,the active waveguide to transmit deep-blue emission signals can be achieved with a very low optical loss coefficient(α)of 6.7×10^(−3)dBμm^(−1).Meanwhile,the full-visible broadband low-loss passive waveguide can be well performed with these AIE microfibers,which has never been observed in the pure organic crystals.More interestingly,the excellent properties of AIE microfibers enable them to act as a wave-guiding excitation source,resulting in a distinct and pure white light emission.The present work not only provides excellent blue light-emitting materials but also bridges the waveguide to realize the efficient white light emission to accelerate the practical applications. 展开更多
关键词 AIE microfiber deep-blue emission energy transfer optical waveguide white light emission
原文传递
Nanostructured materials with localized surface plasmon resonance for photocatalysis 被引量:5
14
作者 Juan li Zaizhu Lou baojun li 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第3期1154-1168,共15页
Localized surface plasmon resonance (LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts. In the past decades, noble... Localized surface plasmon resonance (LSPR) enhanced photocatalysis has fascinated much interest and considerable efforts have been devoted toward the development of plasmonic photocatalysts. In the past decades, noble metal nanoparticles (Au and Ag) with LSPR feature have found wide applications in solar energy conversion. Numerous metal-based photocatalysts have been proposed including metal/semiconductor heterostructures and plasmonic bimetallic or multimetallic nanostructures. However, high cost and scarce reserve of noble metals largely limit their further practical use, which drives the focus gradually shift to low-cost and abundant nonmetallic nanostructures. Recently, various heavily doped semiconductors (such as WO_(3-x), MoO_(3-x), Cu_(2-x)S, TiN) have emerged as potential alternatives to costly noble metals for efficient photocatalysis due to their strong LSPR property in visible-near infrared region. This review starts with a brief introduction to LSPR property and LSPR-enhanced photocatalysis, the following highlights recent advances of plasmonic photocatalysts from noble metal to semiconductor-based plasmonic nanostructures. Their synthesis methods and promising applicability in plasmon-driven photocatalytic reactions such as water splitting, CO_(2) reduction and pollution decomposition are also summarized in details. This review is expected to give guidelines for exploring more efficient plasmonic systems and provide a perspective on development of plasmonic photocatalysis. 展开更多
关键词 Localized surface plasmon resonance Plasmonic photocatalysis Plasmonic semiconductor Hot electrons Solar energy harvesting
原文传递
Lipid droplets as endogenous intracellular microlenses 被引量:6
15
作者 Xixi Chen Tianli Wu +6 位作者 Zhiyong Gong Jinghui Guo Xiaoshuai liu Yao Zhang Yuchao li Pietro Ferraro baojun li 《Light(Science & Applications)》 SCIE EI CAS CSCD 2021年第12期2507-2517,共11页
Using a single biological element as a photonic component with well-defined features has become a new intriguing paradigm in biophotonics.Here we show that endogenous lipid droplets in the mature adipose cells can beh... Using a single biological element as a photonic component with well-defined features has become a new intriguing paradigm in biophotonics.Here we show that endogenous lipid droplets in the mature adipose cells can behave as fully biocompatible microlenses to strengthen the ability of microscopic imaging as well as detecting intra-and extracellular signals.By the assistance of biolenses made of the lipid droplets,enhanced fluorescence imaging of cytoskeleton,lysosomes,and adenoviruses has been achieved.At the same time,we demonstrated that the required excitation power can be reduced by up to 73%.The lipidic microlenses are finely manipulated by optical tweezers in order to address targets and perform their real-time imaging inside the cells.An efficient detecting of fluorescence signal of cancer cells in extracellular fluid was accomplished due to the focusing effect of incident light by the lipid droplets.The lipid droplets acting as endogenous intracellular microlenses open the intriguing route for a multifunctional biocompatible optics tool for biosensing,endoscopic imaging,and single-cell diagnosis. 展开更多
关键词 ENDOGENOUS LIPID OPTICS
原文传递
Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes 被引量:4
16
作者 Jianbin Huang Xiaoshuai liu +1 位作者 Yao Zhang baojun li 《Photonics Research》 SCIE EI 2015年第6期308-312,共5页
We report on the optical trapping and orientation of Escherichia coli(E.coli) cells using two tapered fiber probes.With a laser beam at 980 nm wavelength launched into probe I, an E. coli chain consisting of three cel... We report on the optical trapping and orientation of Escherichia coli(E.coli) cells using two tapered fiber probes.With a laser beam at 980 nm wavelength launched into probe I, an E. coli chain consisting of three cells was formed at the tip of probe I. After launching a beam at 980 nm into probe II, the E.coli at the end of the chain was trapped and oriented via the optical torques yielded by two probes. The orientation of the E. coli was controlled by adjusting the laser power of probe II. Experimental results were interpreted by theoretical analysis and numericalsimulations. 展开更多
关键词 COLI cell Optical trapping and orientation of Escherichia coli cells using two tapered fiber probes II
原文传递
Ag nanowire/nanoparticle-decorated MoS2 monolayers for surface-enhanced Raman scattering applications 被引量:2
17
作者 Juan li Weina Zhang +1 位作者 Hongxiang Lei baojun li 《Nano Research》 SCIE EI CAS CSCD 2018年第4期2181-2189,共9页
Developing well-defined nanostructures with superior surface-enhanced Raman scattering (SERS) performance is a critical and highly desirable goal for the practical applications of SERS in sensing and analysis. Here,... Developing well-defined nanostructures with superior surface-enhanced Raman scattering (SERS) performance is a critical and highly desirable goal for the practical applications of SERS in sensing and analysis. Here, a SERS-active substrate was fabricated by decorating a MoS2 monolayer with Ag nanowire (NW) and nanoparticle (NP) structures, using a spin-coating method. Both experimental and theoretical results indicate that strong SERS signals of rhodamine 6G (R6G) molecules can be achieved at "hotspots" formed in the Ag NW-Ag NP-MoS2 hybrid structure, with an enhancement factor of 106. The SERS enhancement is found to be strongly polarization dependent. The fabricated SERS substrate also exhibits ultrasensitive detection capabilities with a detection limit of 10-11 M, as well as reliable reproducibility and good stability. 展开更多
关键词 Ag nanowire-nanoparticle MoS2 monolayer surface-enhanced Raman scattering (SERS) polarization dependence
原文传递
Coupling atom ensemble and electron transfer in PdCu for superior catalytic kinetics in hydrogen generation 被引量:1
18
作者 Xinru Zhao Yanyan liu +11 位作者 Huiyu Yuan Hao Wen Huanhuan Zhang Saima Ashraf Shuyan Guan Tao liu Sehrish Mehdi Ruofan Shen Xianji Guo Yanping Fan Baozhong liu baojun li 《Nano Research》 SCIE EI CSCD 2023年第7期9012-9021,共10页
The design of high-performance catalysts is the key to the efficient utilization of hydrogen energy.In this work,a PdCu nanoalloy was successfully anchored on TiO_(2)encapsulated with carbon to construct a catalyst.Ou... The design of high-performance catalysts is the key to the efficient utilization of hydrogen energy.In this work,a PdCu nanoalloy was successfully anchored on TiO_(2)encapsulated with carbon to construct a catalyst.Outstanding kinetics of the hydrolysis of ammonia borane(turnover frequency of 279 mol·min^(-1·)mol_(Pd)^(-1))ranking the third place among Pd-based catalysts was achieved in the absence of alkali.Both experimental research and theoretical calculations reveal a lower activation energy of the B-H bond on the PdCu nanoalloy catalyst than that on pristine Pd and a lower activation energy of the O-H bond than that on pristine Cu.The redistribution of d electron and the shift of the d-band center play a critical role in increasing the electron density of Pd and improving the catalytic performances of Pd_(0.1)Cu_(0.9)/TiO_(2)-porous carbon(Pd_(0.1)Cu_(0.9)/T-PC).This work provides novel insights into highly dual-active alloys and sheds light on the mechanism of dual-active sites in promoting borohydride hydrolysis. 展开更多
关键词 PdCu nanoalloy d-band holes ensemble effect borohydride hydrolysis dual-active sites
原文传递
Successive Free-Radical C(sp^(2))-C(sp^(2)) Coupling Reactions to Form Graphene 被引量:2
19
作者 Huaqiang Cao Cheng Wang +6 位作者 baojun li Tianyu Chen Peng Han Yan Zhang Haijun Yang Qunyang li Anthony K.Cheetham 《CCS Chemistry》 CAS 2022年第2期584-597,共14页
Graphene is of great interest because of its exciting properties and potential applications,but its production on a large-scale still presents considerable challenges.Herein,we report the synthesis of predominately fe... Graphene is of great interest because of its exciting properties and potential applications,but its production on a large-scale still presents considerable challenges.Herein,we report the synthesis of predominately few-layer graphene,due toπ–πstacking,and single-layer graphene from reaction between hexabromobenzene and Na metal,followed by annealing to improve crystallinity.The reaction proceeds via a free-radical C(sp^(2))–C(sp^(2))coupling mechanism,which is supported by theoretical calculations.The graphene can host unpaired spin electrons,leading to a short acquisition time for a solidstate nuclear magnetic resonance 13C spectrum from unlabeled graphene,which is ascribed to the very short spin-lattice relaxation time.High catalytic activity for transforming amine to imine with a conversion of>99%and a yield of∼97%is demonstrated,and high electronic conductivity of∼105 S·m^(−1) is found by terahertz spectroscopy.The reaction delivers a method for synthesizing graphene with a high spin concentration from perbrominated benzene molecules by using an active metallic agent,such as Na,Li,or Mg. 展开更多
关键词 graphene synthesis radical C(sp^(2))-C(sp^(2))coupling high electron spin density short spin-lattice relaxation metal-free amine conversion catalyst
原文传递
Light-induced thermal convection for collection and removal of carbon nanotubes
20
作者 Xianguang Yang Rui Xu +3 位作者 Long Wen Zaizhu Lou Qin Chen baojun li 《Fundamental Research》 CAS 2022年第1期59-65,共7页
Carbon nanotubes(CNTs)have exhibited immense potential for applications in biology and medicine,and once their intended purpose is fulfilled,the elimination of residual CNTs is essential to avoid negative effects.In t... Carbon nanotubes(CNTs)have exhibited immense potential for applications in biology and medicine,and once their intended purpose is fulfilled,the elimination of residual CNTs is essential to avoid negative effects.In this study,we demonstrated the effective collection and simple removal of CNTs dispersed in a suspension via thermal convection.First,a tapered fiber tip with a cone angle and end diameter of 10°and 3μm,respectively,was fabricated via a heating and pulling method.Further,a laser beam with a power and wavelength of 100 mW and 1.55^m,respectively,was launched into the tapered fiber tip,which was placed in a CNT suspension,resulting in the formation of a microbubble on the fiber tip.The temperature gradient on the microbubble and suspension surface induced thermal convection in the suspension,which resulted in the accumulation of CNTs on the fiber tip.The experimentally formed CNT cluster possessed a circular top surface with a diameter of 87 nm and an arched cross-section with a height of 19μm.Furthermore,this CNT cluster was firmly attached to the fiber tip.Therefore,the removal of CNT clusters can be realized by simply removing the fiber tip from the suspension.Moreover,we simulated the thermal convection that caused CNT aggregation.The obtained results indicate that convection near the fiber tip flows toward it,which pushes the CNTs toward the fiber tip and enables their attachment to it.Further,the flow velocity is symmetrically distributed as a Gaussian function,which results in the formation of a circular top surface and arched cross-sectional profile for the CNT cluster.Our method may be applied in biomedicine for the collection and removal of nano-drug residues. 展开更多
关键词 CONVECTION MICROBUBBLE AGGREGATION Morphology Carbon nanotubes Surface tension
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部