期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Size engineering of 2D MOF nanosheets for enhanced photodynamic antimicrobial therapy 被引量:1
1
作者 baoli xue Xiwen Geng +8 位作者 Haohao Cui Huiying Chen Zhikang Wu Hong Chen Hai Li Zhan Zhou Meiting Zhao Chaoliang Tan Jingguo Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第9期219-224,共6页
Although porphyrin-based metal-organic frameworks(MOFs)have been widely explored as photosensitizers for photodynamic therapy,how the size will affect the light-induced catalytic activity for generation of reactive ox... Although porphyrin-based metal-organic frameworks(MOFs)have been widely explored as photosensitizers for photodynamic therapy,how the size will affect the light-induced catalytic activity for generation of reactive oxygen species(ROS)still remain unclear.Herein,we first report the size-controlled synthesis of two-dimensional(2D)porphyrin-based PCN-134 MOF nanosheets by a two-step solvothermal method to explore the size effect on its PDT performance,thus yielding enhanced photodynamic antimicrobial therapy.By simply controlling the reaction temperature in the synthesis process,the bulk PCN-134 crystal,large PCN-134(L-PCN-134)nanosheets with a lateral size of 2–3μm and thickness of 33.2–37.5 nm and small PCN-134 nanosheets(S-PCN-134)with a lateral size of 160–180 nm and thickness of 9.1–9.7 nm were successfully prepared.Interestingly,the S-PCN-134 nanosheets exhibit much higher photodynamic activity for ROS generation than that of the bulk 3D PCN-134 crystal and L-PCN-134 nanosheets under a660 nm laser irradiation,suggesting that the photodynamic activity of PCN-134 MOF increases when the size reduces.Therefore,the S-PCN-134 nanosheets show much enhanced performance when used as a photosensitizer for photodynamic antimicrobial activity and wound healing. 展开更多
关键词 2D nanosheets PCN-134 MOFs Size effect Photodynamic therapy ANTIBACTERIAL
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部