Although porphyrin-based metal-organic frameworks(MOFs)have been widely explored as photosensitizers for photodynamic therapy,how the size will affect the light-induced catalytic activity for generation of reactive ox...Although porphyrin-based metal-organic frameworks(MOFs)have been widely explored as photosensitizers for photodynamic therapy,how the size will affect the light-induced catalytic activity for generation of reactive oxygen species(ROS)still remain unclear.Herein,we first report the size-controlled synthesis of two-dimensional(2D)porphyrin-based PCN-134 MOF nanosheets by a two-step solvothermal method to explore the size effect on its PDT performance,thus yielding enhanced photodynamic antimicrobial therapy.By simply controlling the reaction temperature in the synthesis process,the bulk PCN-134 crystal,large PCN-134(L-PCN-134)nanosheets with a lateral size of 2–3μm and thickness of 33.2–37.5 nm and small PCN-134 nanosheets(S-PCN-134)with a lateral size of 160–180 nm and thickness of 9.1–9.7 nm were successfully prepared.Interestingly,the S-PCN-134 nanosheets exhibit much higher photodynamic activity for ROS generation than that of the bulk 3D PCN-134 crystal and L-PCN-134 nanosheets under a660 nm laser irradiation,suggesting that the photodynamic activity of PCN-134 MOF increases when the size reduces.Therefore,the S-PCN-134 nanosheets show much enhanced performance when used as a photosensitizer for photodynamic antimicrobial activity and wound healing.展开更多
基金the funding support from the National Natural Science Foundation of China(No.52102348)the funding support from the National Natural Science Foundation of China(No.52173143)+6 种基金the funding support from the National Natural Science Foundation of China(No.22005259)the Science and Technology Innovation Talent Program of University in Henan Province(No.23HASTIT016)the funding support from China Postdoctoral Science Foundation(No.2021M701113)the Start-Up Grant(No.9610495)from City University of Hong Kongthe funding support from the National Natural Science Foundation of China(No.21905195)Natural Science Foundation of Tianjin City(No.20JCYBJC00800)the PEIYANG Young Scholars Program of Tianjin University(No.2020XRX-0023)。
文摘Although porphyrin-based metal-organic frameworks(MOFs)have been widely explored as photosensitizers for photodynamic therapy,how the size will affect the light-induced catalytic activity for generation of reactive oxygen species(ROS)still remain unclear.Herein,we first report the size-controlled synthesis of two-dimensional(2D)porphyrin-based PCN-134 MOF nanosheets by a two-step solvothermal method to explore the size effect on its PDT performance,thus yielding enhanced photodynamic antimicrobial therapy.By simply controlling the reaction temperature in the synthesis process,the bulk PCN-134 crystal,large PCN-134(L-PCN-134)nanosheets with a lateral size of 2–3μm and thickness of 33.2–37.5 nm and small PCN-134 nanosheets(S-PCN-134)with a lateral size of 160–180 nm and thickness of 9.1–9.7 nm were successfully prepared.Interestingly,the S-PCN-134 nanosheets exhibit much higher photodynamic activity for ROS generation than that of the bulk 3D PCN-134 crystal and L-PCN-134 nanosheets under a660 nm laser irradiation,suggesting that the photodynamic activity of PCN-134 MOF increases when the size reduces.Therefore,the S-PCN-134 nanosheets show much enhanced performance when used as a photosensitizer for photodynamic antimicrobial activity and wound healing.