Dislocation and grain boundary have great influence on helium behavior in materials. In this paper, the helium bubble coalescence in titanium with dislocations was simulated using molecular dynamics method. The result...Dislocation and grain boundary have great influence on helium behavior in materials. In this paper, the helium bubble coalescence in titanium with dislocations was simulated using molecular dynamics method. The results show that, when the second helium bubble nucleates near the slip plane, it grows toward the first helium bubble which lies at the dislocation core till they coalesce with each other. However, it is not easy for the coalescence to occur if the two helium bubbles lie in different atomic layers in (001) plane. If the second helium bubble is nucleated on the side of the slip plane with full atomic layers, the second helium bubble growth could lead to the movement of the first helium bubble toward the other sides of the slip plane. The growth rate and direction of the second helium bubble are closely related to the pressure around it.展开更多
Realizing digital signal demodulation on the general computer is an important research direction in the field of signal processing in recent years. In this paper, the algorithm of BPSK signal demodulation which has hi...Realizing digital signal demodulation on the general computer is an important research direction in the field of signal processing in recent years. In this paper, the algorithm of BPSK signal demodulation which has high real-time requirements is researched on the general computer. According to the characteristics of “CPU + GPU” heterogeneous computing, the parallel computation model of digital communication is put forward, and BPSK signal demodulation is realized on CUDA platform. Test results show that the computing time ratio of 1:1.7, when the bit error rate can be achieved 10<sup>?5</sup>.展开更多
LTE heterogeneous networks (HetNets) is becoming a popular topic since it was first developed in 3GPP Release 10. HetNets has the advantage to assemble various cell networks and enhance users’ Quality of Service (QoS...LTE heterogeneous networks (HetNets) is becoming a popular topic since it was first developed in 3GPP Release 10. HetNets has the advantage to assemble various cell networks and enhance users’ Quality of Service (QoS) within the system. However, its development is still constrained by two main issues: 1) Load imbalance caused by different transmission powers for various tiers, and 2) The unbalanced transmission power may also increase unnecessary handover rate. In order to solve the first issue, Cell range expansion (CRE) can be applied in the system, which will benefit lower-tier cell during user association phase;CRE, Hysteresis Margin (HM) and Time-to-Trigger (TTT) will be utilized to bound UE within lower tier network of HetNets and therefore solve the second issue. On the other hand, the relationship of these parameters may be complicated and even reduce QoS if they are chosen incorrectly. This paper will evaluate the advantage and disadvantage of all three parameters and propose a Markov Chain Process (MCP) based method to find optimal HM, CRE and TTT values. And then, the simulation is taken and the optimal combination for our scenario is obtained to be 1 dB, 6 dB and 60 ms respectively. First contribution of this paper is to map the HetNets handover process into MCP and all the phases of handover can be calculated and analysed in probability way, so that further prediction and simulation can be realised. Second contribution is to establish a mathematical method to model the relationship of HM, CRE and TTT in HetNets, therefore the coordination of these three important parameters is achieved to obtain system optimization.展开更多
文摘Dislocation and grain boundary have great influence on helium behavior in materials. In this paper, the helium bubble coalescence in titanium with dislocations was simulated using molecular dynamics method. The results show that, when the second helium bubble nucleates near the slip plane, it grows toward the first helium bubble which lies at the dislocation core till they coalesce with each other. However, it is not easy for the coalescence to occur if the two helium bubbles lie in different atomic layers in (001) plane. If the second helium bubble is nucleated on the side of the slip plane with full atomic layers, the second helium bubble growth could lead to the movement of the first helium bubble toward the other sides of the slip plane. The growth rate and direction of the second helium bubble are closely related to the pressure around it.
文摘Realizing digital signal demodulation on the general computer is an important research direction in the field of signal processing in recent years. In this paper, the algorithm of BPSK signal demodulation which has high real-time requirements is researched on the general computer. According to the characteristics of “CPU + GPU” heterogeneous computing, the parallel computation model of digital communication is put forward, and BPSK signal demodulation is realized on CUDA platform. Test results show that the computing time ratio of 1:1.7, when the bit error rate can be achieved 10<sup>?5</sup>.
文摘LTE heterogeneous networks (HetNets) is becoming a popular topic since it was first developed in 3GPP Release 10. HetNets has the advantage to assemble various cell networks and enhance users’ Quality of Service (QoS) within the system. However, its development is still constrained by two main issues: 1) Load imbalance caused by different transmission powers for various tiers, and 2) The unbalanced transmission power may also increase unnecessary handover rate. In order to solve the first issue, Cell range expansion (CRE) can be applied in the system, which will benefit lower-tier cell during user association phase;CRE, Hysteresis Margin (HM) and Time-to-Trigger (TTT) will be utilized to bound UE within lower tier network of HetNets and therefore solve the second issue. On the other hand, the relationship of these parameters may be complicated and even reduce QoS if they are chosen incorrectly. This paper will evaluate the advantage and disadvantage of all three parameters and propose a Markov Chain Process (MCP) based method to find optimal HM, CRE and TTT values. And then, the simulation is taken and the optimal combination for our scenario is obtained to be 1 dB, 6 dB and 60 ms respectively. First contribution of this paper is to map the HetNets handover process into MCP and all the phases of handover can be calculated and analysed in probability way, so that further prediction and simulation can be realised. Second contribution is to establish a mathematical method to model the relationship of HM, CRE and TTT in HetNets, therefore the coordination of these three important parameters is achieved to obtain system optimization.