We discuss evolutions of nonlinear features in Richtmyer-Meshkov instability(RMI)f which are known as spikes and bubbles.In single-phase RMI,the nonlinear growth has been extensively studied but the relevant investiga...We discuss evolutions of nonlinear features in Richtmyer-Meshkov instability(RMI)f which are known as spikes and bubbles.In single-phase RMI,the nonlinear growth has been extensively studied but the relevant investigation in multiphase RMI is insufficient.Therefore,we illustrate the dynamic coupling behaviors between gas phase and particle phase and then analyze the growth of the nonlinear features theoretically.A universal model is proposed to describe the nonlinear finger(spike and bubble)growth velocity qualitatively in multiphase RMI.Both the effects of gas and particles have been taken into consideration in this model.Further,we derive the analytical expressions of the nonlinear growth model in limit cases(equilibrium How and frozen How).A novel compressible multiphase particle-in-cell(CMP-PIC)method is used to validate the applicability of this model.Numerical finger growth velocity matches well with our model.The present study reveals that particle volume fraction,particle density and Stokes number are the three key factors,which dominate the interphase momentum exchange and further induce the unique property of multiphase RMI.展开更多
基金the National Natural Science Foundation of China under Grant Nos.91852207,11801036,11502029the NSAF under Grant No.U1630247.
文摘We discuss evolutions of nonlinear features in Richtmyer-Meshkov instability(RMI)f which are known as spikes and bubbles.In single-phase RMI,the nonlinear growth has been extensively studied but the relevant investigation in multiphase RMI is insufficient.Therefore,we illustrate the dynamic coupling behaviors between gas phase and particle phase and then analyze the growth of the nonlinear features theoretically.A universal model is proposed to describe the nonlinear finger(spike and bubble)growth velocity qualitatively in multiphase RMI.Both the effects of gas and particles have been taken into consideration in this model.Further,we derive the analytical expressions of the nonlinear growth model in limit cases(equilibrium How and frozen How).A novel compressible multiphase particle-in-cell(CMP-PIC)method is used to validate the applicability of this model.Numerical finger growth velocity matches well with our model.The present study reveals that particle volume fraction,particle density and Stokes number are the three key factors,which dominate the interphase momentum exchange and further induce the unique property of multiphase RMI.