The sea star Asterias amurensis is widely viewed as a severe“marine pest”because of its broad feeding habits.Over the past few decades,A.amurensis undergoes massive and sporadic population outbreaks worldwide,causin...The sea star Asterias amurensis is widely viewed as a severe“marine pest”because of its broad feeding habits.Over the past few decades,A.amurensis undergoes massive and sporadic population outbreaks worldwide,causing extensive economic and ecological losses to the local aquaculture industry and marine ecosystem.Understanding the genetic diversity and population structure of A.amurensis can provide vital information for resource management.By analyzing the polymorphism of the mitochondrial cytochrome C oxidase subunit I(COI)gene and ten simple sequence repeat(SSR)microsatellites markers,the genetic diversity and population structure of A.amurensis of four populations along the northern coast of China was uncovered.A total of 36 haplotypes were identified,and a main haplotype was found in four populations.The Qingdao(QD)population displayed the highest genetic diversity among all the populations.The AMOVA and pairwise F_(st)showed that there was small but statistically significant population differentiation among the four populations,especially between QD and Weihai(WH).Moreover,the principal component analysis(PCA)and admixture analysis showed that several individuals in Yantai(YT)and Dalian(DL)had little genetic association with other individuals.Overall,this study provided useful information of the genetic diversity and population structure of A.amurensis and will contribute to the resource management of A.amurensis in China.展开更多
Since the mud snail Bullacta exarata was introduced for economic aquaculture in the Huanghe River(Yellow River) Delta in 2001, its quick population growth and expanded distribution make it a key-species in the interti...Since the mud snail Bullacta exarata was introduced for economic aquaculture in the Huanghe River(Yellow River) Delta in 2001, its quick population growth and expanded distribution make it a key-species in the intertidal zone of this area. This significantly contributed to the economic income of the local people, but its potential ecological impact on the benthic ecosystem remains unknown. A mesocosm study was conducted to test whether its bioturbation activities affect the microphytobenthos(MPBs;i.e., sedimentary microbes and unicellular algae)productivity and the nutrient exchange between the sediment-water interface. Our results show that the mud snail significantly impacted the dissolved oxygen(DO) flux across the sediment-water interface on the condition of normal sediment and light treatment, and significantly increased the ammonium efflux during recovery period in the defaunated sediment and dark treatment. The presence of micro-and meiofauna significantly increased the NH4-N flux in dark treatment. Whereas, in light treatment, these small animals had less effects on the DO and NH4-N flux between sediment-water interface. Our results provide better insight into the effect of the mud snail B.exarata on the ecosystem functioning via benthic fluxes.展开更多
Features of oil spills and look-alikes in polarimetric synthetic aperture radar(SAR)images always play an important role in oil spill detection.Many oil spill detection algorithms have been implemented based on these ...Features of oil spills and look-alikes in polarimetric synthetic aperture radar(SAR)images always play an important role in oil spill detection.Many oil spill detection algorithms have been implemented based on these features.Although environmental factors such as wind speed are important to distinguish oil spills and look-alikes,some oil spill detection algorithms do not consider the environmental factors.To distinguish oil spills and look-alikes more accurately based on environmental factors and image features,a new oil spill detection algorithm based on Dempster-Shafer evidence theory was proposed.The process of oil spill detection taking account of environmental factors was modeled using the subjective Bayesian model.The Faster-region convolutional neural networks(RCNN)model was used for oil spill detection based on the convolution features.The detection results of the two models were fused at decision level using Dempster-Shafer evidence theory.The establishment and test of the proposed algorithm were completed based on our oil spill and look-alike sample database that contains 1798 image samples and environmental information records related to the image samples.The analysis and evaluation of the proposed algorithm shows a good ability to detect oil spills at a higher detection rate,with an identifi cation rate greater than 75%and a false alarm rate lower than 19%from experiments.A total of 12 oil spill SAR images were collected for the validation and evaluation of the proposed algorithm.The evaluation result shows that the proposed algorithm has a good performance on detecting oil spills with an overall detection rate greater than 70%.展开更多
A laboratory-based microcosm experiment was carried out to examine both the behavioral and antioxidant response of the clam Gomphina veneriformis under the conditions of 3 types of burial material(sand,silt,silt-sand ...A laboratory-based microcosm experiment was carried out to examine both the behavioral and antioxidant response of the clam Gomphina veneriformis under the conditions of 3 types of burial material(sand,silt,silt-sand mixture)with 3 burial depths(5 cm,15 cm,30 cm).The concentration of dissolved oxygen decreased significantly after 3 d of burial in all experimental groups.In silt and sand-silt mixture groups,the interstitial water quality became worsened with lower pH,and higher NH4^(+)-N concentration,where clam mortality occurred simultaneously.However,clam samples in all sand groups and 5 cm,15 cm sand-silt mixture groups survived well for 8 d.Obviously fewer individuals left in the bottom sand in the 15 cm,30 cm silt groups and 30 cm sand-silt mixture groups than in the 5 cm groups.Therefore,it suggests that adding silt and increasing burial depth could stimulate the vertical movement of organisms and cause lethal effects.It was found that the burial depth was the key factor that influenced the activities of antioxidant enzymes,such as superoxide dismutase(SOD)and catalase(CAT).The SOD and CAT activities in the gills and hepatopancreases of organisms both showed significant upregulation in 30 cm burial depth after buried for 8 d.Higher enzyme activities were found in gills than in hepatopancreases,which indicated that the gills of the bivalve G.veneriformis were more susceptible to burial effects than hepatopancreases.Overall,this study shows that sediment burial could cause effects on the biological behavior and antioxidant enzyme activities.展开更多
The effects of different proportions of La and Y elements in the A-side on the structure and properties of A_(2)B_(7)-type La-Y-Ni hydrogen storage alloys were investigated.The(La,Y)_(2)Ni_(7)hydrogen storage alloys w...The effects of different proportions of La and Y elements in the A-side on the structure and properties of A_(2)B_(7)-type La-Y-Ni hydrogen storage alloys were investigated.The(La,Y)_(2)Ni_(7)hydrogen storage alloys with different La/Y ratios were prepared by sintering the Y_(2)Ni_(4)precursor and different AB_(5)-type precursors at 1298 K for 5 h and subsequently annealed for 20 h at 1248 K.All the alloys only contain Ce_(2)Ni_(7)(2H-type)and Gd_(2)Co_(7)(3R-type)phases with different mass ratios.As the La/Y ratio decreases,the cell volume of the two phases declines and the corresponding plateau pressure gradually increases.As the proportion of Y in the alloy increases,the hydrogen storage capacity increases gradually from 1.309 wt%(La/Y=1/1)to 1.713 wt%(La/Y=1/5)and the high-rate discharge(HRD1500)ability of the alloy electrodes increases gradually from 62.7%(La/Y=1/1)to 88.6%(La/Y=1/5).The hydrogen diffusion rate in the bulk of the alloy is the controlling step of hydriding/dehydriding kinetics.The Y ele ment can effectively inhibit the hydrogen-induced amorphous(HIA)of La-Y-Ni alloys,but the poor stability of the Y element in alkaline KOH aqueous solution leads to a decrease in the electrochemical cyclic stability with increasing Y content.展开更多
A method is described here for the quickly(<30 s) accurate determination of Cr(VI)(Cr_2O_7^(2-)), based on fluorescent probes gold nanodots(AuNDs, excitation/emission peaks at 395/604 nm) coated with glutathione(GS...A method is described here for the quickly(<30 s) accurate determination of Cr(VI)(Cr_2O_7^(2-)), based on fluorescent probes gold nanodots(AuNDs, excitation/emission peaks at 395/604 nm) coated with glutathione(GSH). The fluorescence of the AuNDs responses linearly to Cr(VI) concentrations, ranging widely from 1 nM to 10 m M with detection limit as low as 0.35 nM. At the same time, the AuNDs is demonstrated highly selective for Cr(VI) detection over other acid group ions and metal ions without any masking reagent. These make probability for practical use. The quenching mechanism is investigated deeply via fluorescent lifetime, XPS and TEM analysis. Different from most reported quenching explanation of aggregation derived from charge attraction, these results verify the redox reaction between Cr_2O_7^(2-)and sulfhydryl(–S) of GSH. The Au(I)–S bonds of AuNDs broke, accompanies with the oxidation of –S to form S–S bonds. As a result, AuNDs cross linked to each other. In the end, the fluorescence quenched. Attractively, the present study provides a new strategy for pollutant detection, such as from harmful Cr(VI) of Cr_2O_7^(2-)to nontoxic Cr(III).展开更多
基金Supported by the International Science Partnership Program of the Chinese Academy of Sciences(No.133137KYSB20200002)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050304)the Natural Science Foundation of Shandong Province(Nos.ZR2021MC151,ZR2021QD158)。
文摘The sea star Asterias amurensis is widely viewed as a severe“marine pest”because of its broad feeding habits.Over the past few decades,A.amurensis undergoes massive and sporadic population outbreaks worldwide,causing extensive economic and ecological losses to the local aquaculture industry and marine ecosystem.Understanding the genetic diversity and population structure of A.amurensis can provide vital information for resource management.By analyzing the polymorphism of the mitochondrial cytochrome C oxidase subunit I(COI)gene and ten simple sequence repeat(SSR)microsatellites markers,the genetic diversity and population structure of A.amurensis of four populations along the northern coast of China was uncovered.A total of 36 haplotypes were identified,and a main haplotype was found in four populations.The Qingdao(QD)population displayed the highest genetic diversity among all the populations.The AMOVA and pairwise F_(st)showed that there was small but statistically significant population differentiation among the four populations,especially between QD and Weihai(WH).Moreover,the principal component analysis(PCA)and admixture analysis showed that several individuals in Yantai(YT)and Dalian(DL)had little genetic association with other individuals.Overall,this study provided useful information of the genetic diversity and population structure of A.amurensis and will contribute to the resource management of A.amurensis in China.
基金The Strategic Priority Research Program of the Chinese Academy of Sciences under contract Nos XDA23050304 and XDA23050202the Key Research Project of Frontier Science of Chinese Academy of Sciences under contract No.QYZDB-SSWDQC041+3 种基金the Program of Ministry of Science and Technology of the People’s Republic of China under contract No.2015FY210300the National Natural Science Foundation of China under contract No.41061130543the Netherlands Organization for Scientific Research under contract No.843.10.003 as part of the NSFC-NOW “Water ways,Harbours,Estuaries and Coastal Engineering” schemethe self-deployment project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences under contract No.YIC755021012
文摘Since the mud snail Bullacta exarata was introduced for economic aquaculture in the Huanghe River(Yellow River) Delta in 2001, its quick population growth and expanded distribution make it a key-species in the intertidal zone of this area. This significantly contributed to the economic income of the local people, but its potential ecological impact on the benthic ecosystem remains unknown. A mesocosm study was conducted to test whether its bioturbation activities affect the microphytobenthos(MPBs;i.e., sedimentary microbes and unicellular algae)productivity and the nutrient exchange between the sediment-water interface. Our results show that the mud snail significantly impacted the dissolved oxygen(DO) flux across the sediment-water interface on the condition of normal sediment and light treatment, and significantly increased the ammonium efflux during recovery period in the defaunated sediment and dark treatment. The presence of micro-and meiofauna significantly increased the NH4-N flux in dark treatment. Whereas, in light treatment, these small animals had less effects on the DO and NH4-N flux between sediment-water interface. Our results provide better insight into the effect of the mud snail B.exarata on the ecosystem functioning via benthic fluxes.
基金Supported by the National Key R&D Program of China(No.2017YFC1405600)the National Natural Science Foundation of China(Nos.42076197,41576032)the Major Program for the International Cooperation of the Chinese Academy of Sciences(No.133337KYSB20160002)。
文摘Features of oil spills and look-alikes in polarimetric synthetic aperture radar(SAR)images always play an important role in oil spill detection.Many oil spill detection algorithms have been implemented based on these features.Although environmental factors such as wind speed are important to distinguish oil spills and look-alikes,some oil spill detection algorithms do not consider the environmental factors.To distinguish oil spills and look-alikes more accurately based on environmental factors and image features,a new oil spill detection algorithm based on Dempster-Shafer evidence theory was proposed.The process of oil spill detection taking account of environmental factors was modeled using the subjective Bayesian model.The Faster-region convolutional neural networks(RCNN)model was used for oil spill detection based on the convolution features.The detection results of the two models were fused at decision level using Dempster-Shafer evidence theory.The establishment and test of the proposed algorithm were completed based on our oil spill and look-alike sample database that contains 1798 image samples and environmental information records related to the image samples.The analysis and evaluation of the proposed algorithm shows a good ability to detect oil spills at a higher detection rate,with an identifi cation rate greater than 75%and a false alarm rate lower than 19%from experiments.A total of 12 oil spill SAR images were collected for the validation and evaluation of the proposed algorithm.The evaluation result shows that the proposed algorithm has a good performance on detecting oil spills with an overall detection rate greater than 70%.
基金The Key Research Project of Frontier Science of Chinese Academy of Sciences under contract No.QYZDB-SSWDQC041the Program of Ministry of Science and Technology of China under contract No.2015FY210300+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences under contract Nos XDA23050304,XDA23050202the Open Research Fund of the Laboratory of Marine Ecosystem and Biogeochemistry of State Oceanic Administration under contact No.LMEB201716the Fund of the China Scholarship Council。
文摘A laboratory-based microcosm experiment was carried out to examine both the behavioral and antioxidant response of the clam Gomphina veneriformis under the conditions of 3 types of burial material(sand,silt,silt-sand mixture)with 3 burial depths(5 cm,15 cm,30 cm).The concentration of dissolved oxygen decreased significantly after 3 d of burial in all experimental groups.In silt and sand-silt mixture groups,the interstitial water quality became worsened with lower pH,and higher NH4^(+)-N concentration,where clam mortality occurred simultaneously.However,clam samples in all sand groups and 5 cm,15 cm sand-silt mixture groups survived well for 8 d.Obviously fewer individuals left in the bottom sand in the 15 cm,30 cm silt groups and 30 cm sand-silt mixture groups than in the 5 cm groups.Therefore,it suggests that adding silt and increasing burial depth could stimulate the vertical movement of organisms and cause lethal effects.It was found that the burial depth was the key factor that influenced the activities of antioxidant enzymes,such as superoxide dismutase(SOD)and catalase(CAT).The SOD and CAT activities in the gills and hepatopancreases of organisms both showed significant upregulation in 30 cm burial depth after buried for 8 d.Higher enzyme activities were found in gills than in hepatopancreases,which indicated that the gills of the bivalve G.veneriformis were more susceptible to burial effects than hepatopancreases.Overall,this study shows that sediment burial could cause effects on the biological behavior and antioxidant enzyme activities.
基金Project supported by the National Natural Science Foundation of China(51961002)National Key Research and Development Projects of China(2018YFE124400)+2 种基金Natural Science Foundation of Inner Mongolia(2020MS05013,2018MS05016)Science and Technology Program of Inner Mongolia(2020B2156)Special Project of Achievement Transformation in Inner Mongolia(2019CG082)。
文摘The effects of different proportions of La and Y elements in the A-side on the structure and properties of A_(2)B_(7)-type La-Y-Ni hydrogen storage alloys were investigated.The(La,Y)_(2)Ni_(7)hydrogen storage alloys with different La/Y ratios were prepared by sintering the Y_(2)Ni_(4)precursor and different AB_(5)-type precursors at 1298 K for 5 h and subsequently annealed for 20 h at 1248 K.All the alloys only contain Ce_(2)Ni_(7)(2H-type)and Gd_(2)Co_(7)(3R-type)phases with different mass ratios.As the La/Y ratio decreases,the cell volume of the two phases declines and the corresponding plateau pressure gradually increases.As the proportion of Y in the alloy increases,the hydrogen storage capacity increases gradually from 1.309 wt%(La/Y=1/1)to 1.713 wt%(La/Y=1/5)and the high-rate discharge(HRD1500)ability of the alloy electrodes increases gradually from 62.7%(La/Y=1/1)to 88.6%(La/Y=1/5).The hydrogen diffusion rate in the bulk of the alloy is the controlling step of hydriding/dehydriding kinetics.The Y ele ment can effectively inhibit the hydrogen-induced amorphous(HIA)of La-Y-Ni alloys,but the poor stability of the Y element in alkaline KOH aqueous solution leads to a decrease in the electrochemical cyclic stability with increasing Y content.
基金supported by the National Natural Science Foundation of China(51373061,21304090)Emphases Science and Technology Research Program of Jilin Province Science and Technology Development Plan(20180201060SF)Science Foundation of China University of Petroleum,Beijing(2462017YJRC027)
文摘A method is described here for the quickly(<30 s) accurate determination of Cr(VI)(Cr_2O_7^(2-)), based on fluorescent probes gold nanodots(AuNDs, excitation/emission peaks at 395/604 nm) coated with glutathione(GSH). The fluorescence of the AuNDs responses linearly to Cr(VI) concentrations, ranging widely from 1 nM to 10 m M with detection limit as low as 0.35 nM. At the same time, the AuNDs is demonstrated highly selective for Cr(VI) detection over other acid group ions and metal ions without any masking reagent. These make probability for practical use. The quenching mechanism is investigated deeply via fluorescent lifetime, XPS and TEM analysis. Different from most reported quenching explanation of aggregation derived from charge attraction, these results verify the redox reaction between Cr_2O_7^(2-)and sulfhydryl(–S) of GSH. The Au(I)–S bonds of AuNDs broke, accompanies with the oxidation of –S to form S–S bonds. As a result, AuNDs cross linked to each other. In the end, the fluorescence quenched. Attractively, the present study provides a new strategy for pollutant detection, such as from harmful Cr(VI) of Cr_2O_7^(2-)to nontoxic Cr(III).