recanalization.Yet,due to ischemia-reperfusion injury,over half of these patients still experience poor prognoses.Thus,neuroprotective treatment is imperative to alleviate the ischemic brain injury,and a proof-of-conc...recanalization.Yet,due to ischemia-reperfusion injury,over half of these patients still experience poor prognoses.Thus,neuroprotective treatment is imperative to alleviate the ischemic brain injury,and a proof-of-concept study was conducted on“biodegradable neuroprotective stent”.This concept is premised on the hypothesis that locally released Mg^(2+)/H_(2) from Mg metal within the bloodstream could offer synergistic neuroprotection against reperfusion injury in distant cerebral ischemic tissues.Initially,the study evaluated pure Mg’s neuroactive potential using oxygen-glucose deprivation/reoxygenation(OGD/R)injured neuron cells.Subsequently,a pure Mg wire was implanted into the common carotid artery of the transient middle cerebral artery occlusion(MCAO)rat model to simulate human brain ischemia/reperfusion injury.In vitro analyses revealed that pure Mg extract aided mouse hippocampal neuronal cell(HT-22)in defending against OGD/R injury.Additionally,the protective effects of the Mg wire on behavioral abnormalities,neural injury,blood-brain barrier disruption,and cerebral blood flow reduction in MCAO rats were verified.Conclusively,Mg-based biodegradable neuroprotective implants could serve as an effective local Mg^(2+)/H_(2) delivery system for treating distant cerebral ischemic diseases.展开更多
基金funded by National Natural Science Foundation of China(82027802,82102220)Research Funding on Translational Medicine from Beijing Municipal Science and Technology Commission(Z221100007422023)+4 种基金Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support(YGLX202325)Non-profit Central Research Institute Fund of Chinese Academy of Medical(2023-JKCS-09)Beijing Association for Science and Technology Youth Talent Support Program(BYESS2022081)Science and Technology Innovation Service Capacity Building Project of Beijing Municipal Education Commission(11000023T000002157177)Outstanding Young Talents Program of Capital Medical University(B2305),Beijing Municipal Natural Science Foundation(7244510),Beijing Nova Program(20230484286).
文摘recanalization.Yet,due to ischemia-reperfusion injury,over half of these patients still experience poor prognoses.Thus,neuroprotective treatment is imperative to alleviate the ischemic brain injury,and a proof-of-concept study was conducted on“biodegradable neuroprotective stent”.This concept is premised on the hypothesis that locally released Mg^(2+)/H_(2) from Mg metal within the bloodstream could offer synergistic neuroprotection against reperfusion injury in distant cerebral ischemic tissues.Initially,the study evaluated pure Mg’s neuroactive potential using oxygen-glucose deprivation/reoxygenation(OGD/R)injured neuron cells.Subsequently,a pure Mg wire was implanted into the common carotid artery of the transient middle cerebral artery occlusion(MCAO)rat model to simulate human brain ischemia/reperfusion injury.In vitro analyses revealed that pure Mg extract aided mouse hippocampal neuronal cell(HT-22)in defending against OGD/R injury.Additionally,the protective effects of the Mg wire on behavioral abnormalities,neural injury,blood-brain barrier disruption,and cerebral blood flow reduction in MCAO rats were verified.Conclusively,Mg-based biodegradable neuroprotective implants could serve as an effective local Mg^(2+)/H_(2) delivery system for treating distant cerebral ischemic diseases.