To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compressio...To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D,with the parallel bond model employed as the particle contact constitutive model.First,twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters.Then,nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters.Furthermore,the calibration method of the meso-parameters were then proposed.Finally,the contact force chain,the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC.The results show that:(1)The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient.The failure strength increases exponentially with the increase of the friction coefficient,the normal bonding strength and the bonding radius coefficient,and remains constant with the increase of bond stiffness ratio;(2)The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength;(3)The number of the force chains,the contact force,and the bond strength between particles will increase with the increase of the hydrate saturation,which leads to the larger failure strength.展开更多
A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstabl...A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.展开更多
This paper investigates the fixed-time stability theorem and state-feedback controller design for stochastic nonlinear systems.We propose an improved fixed-time Lyapunov theorem with a more rigorous and reasonable pro...This paper investigates the fixed-time stability theorem and state-feedback controller design for stochastic nonlinear systems.We propose an improved fixed-time Lyapunov theorem with a more rigorous and reasonable proof procedure.In particular,an important corollary is obtained,which can give a less conservative upper-bound estimate of the settling time.Based on the backstepping technique and the addition of a power integrator method,a state-feedback controller is skillfully designed for a class of stochastic nonlinear systems.It is proved that the proposed controller can render the closed-loop system fixed-time stable in probability with the help of the proposed fixed-time stability criteria.Finally,the effectiveness of the proposed controller is demonstrated by simulation examples and comparisons.展开更多
This paper considers the problem of distributed online regularized optimization over a network that consists of multiple interacting nodes.Each node is endowed with a sequence of loss functions that are time-varying a...This paper considers the problem of distributed online regularized optimization over a network that consists of multiple interacting nodes.Each node is endowed with a sequence of loss functions that are time-varying and a regularization function that is fixed over time.A distributed forward-backward splitting algorithm is proposed for solving this problem and both fixed and adaptive learning rates are adopted.For both cases,we show that the regret upper bounds scale as O(VT),where T is the time horizon.In particular,those rates match the centralized counterpart.Finally,we show the effectiveness of the proposed algorithms over an online distributed regularized linear regression problem.展开更多
基金National Natural Science Foundation Joint Fund Project(U21A20111)National Natural Science Foundation of China(51974112,51674108).
文摘To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal(GHBC)and to calibrate the meso-parameters,the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D,with the parallel bond model employed as the particle contact constitutive model.First,twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters.Then,nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters.Furthermore,the calibration method of the meso-parameters were then proposed.Finally,the contact force chain,the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC.The results show that:(1)The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient.The failure strength increases exponentially with the increase of the friction coefficient,the normal bonding strength and the bonding radius coefficient,and remains constant with the increase of bond stiffness ratio;(2)The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength;(3)The number of the force chains,the contact force,and the bond strength between particles will increase with the increase of the hydrate saturation,which leads to the larger failure strength.
基金the National Natural Science Foundation of China(No.60674027)China Postdoctoral Science Foundation(No.20070410336)the Postdoctor Foundation of Jiangsu Province(No.0602042B).
文摘A new class of hybrid impulsive and switching models are introduced and their robust exponential stability and control synthesis are addressed. The proposed switched system is composed of stable subsystems and unstable subsystems, which not only involves state delay and norm-bounded time-varying parameter uncertainties, but also contains the impulsive switching effects between the subsystems. Based on the extension of the system dimension and the concept of average dwell time, a kind of practically useful switching rule is presented which guarantees the desired robust exponential stability. A switched state feedback controller is also given.
基金supported in part by the National Natural Science Foundation of China(62073166,61673215)the Key Laboratory of Jiangsu Province。
文摘This paper investigates the fixed-time stability theorem and state-feedback controller design for stochastic nonlinear systems.We propose an improved fixed-time Lyapunov theorem with a more rigorous and reasonable proof procedure.In particular,an important corollary is obtained,which can give a less conservative upper-bound estimate of the settling time.Based on the backstepping technique and the addition of a power integrator method,a state-feedback controller is skillfully designed for a class of stochastic nonlinear systems.It is proved that the proposed controller can render the closed-loop system fixed-time stable in probability with the help of the proposed fixed-time stability criteria.Finally,the effectiveness of the proposed controller is demonstrated by simulation examples and comparisons.
基金This work was supported in part by the National Natural Science Foundation of China(Nos.62022042,62273181 and 62073166)in part by the Fundamental Research Funds for the Central Universities(No.30919011105)in part by the Open Project of the Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment(No.GDSC202017).
文摘This paper considers the problem of distributed online regularized optimization over a network that consists of multiple interacting nodes.Each node is endowed with a sequence of loss functions that are time-varying and a regularization function that is fixed over time.A distributed forward-backward splitting algorithm is proposed for solving this problem and both fixed and adaptive learning rates are adopted.For both cases,we show that the regret upper bounds scale as O(VT),where T is the time horizon.In particular,those rates match the centralized counterpart.Finally,we show the effectiveness of the proposed algorithms over an online distributed regularized linear regression problem.