Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vac...Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vacuum distillation process(LVDP)for the separation of hydroisomerization fractions(HIF)of a hydrocracking tail oil(HTO).First,the HTO hydroisomerization reaction is investigated in an experimental fixed-bed reactor to achieve the optimum liquid HIF by analyzing the impact of the operating conditions.A LVDP used for HIF separation is proposed and optimized.Subsequently,two thermal coupling intensified technologies,including side-stream(SC)and dividing-wall column(DWC),are combined with the LVDP to develop side-stream vacuum distillation process(SC-LVDP)and dividing-wall column vacuum distillation process(DWC-LVDP).The performance of LVDP,SC-LVDP,and DWC-LVDP are evaluated in terms of energy consumption,capital cost,total annual cost,product yields,and stripping steam consumption.The results demonstrates that the intensified processes,SC-LVDP and DWC-LVDP significantly decreases the energy consumption and capital cost compared with LVDP.DWC-LVDP further decreases in capital cost due to the removal of the side stripper and narrows the overlap between the third lube oils and fourth lube oils.This study attempts to combine DWC structure into the separation of petroleum fractions,and the proposed approach and the results presented provide an incentive for the industrial implementation of high-quality utilization of HTO through intensified LVDP.展开更多
Bradysia cellarum Frey (Diptera: Sciaridae) is an important subterranean pestand is especially damaging to Chinese chive. An effective and moreenvironmentally safe method than pesticides is needed for its control. The...Bradysia cellarum Frey (Diptera: Sciaridae) is an important subterranean pestand is especially damaging to Chinese chive. An effective and moreenvironmentally safe method than pesticides is needed for its control. Theefficacy of B. cellarum control, growth of Chinese chive and soil microbialdiversity were investigated after uae of soil solarization to exterminate thisinsect pest. The results show that on the first day after soil solarization 100%control of B. cellarum was achieved. Growth of Chinese chive was lower insolarized plots than in control plots over the first 10 days after treatment. Chivegrowth in solarized plots increased subsequently to match that in the controlplots. Moreover, the soil microbial community diversity in the treatment groupdecreased initially before gradually recovering. In addition, the abundance ofbeneficial microorganisms in the genus Bacillus and the phyla Proteobacteria,Chloroflexi and Firmicutes increased significantly. Soil solarization is thereforepractical and worthy of promotion in Chinese chive-growing regions.展开更多
基金funded by Shanghai Sailing Program (No.19YF1410800)National Natural Science Foundation of China(No. 21908056)。
文摘Dividing-wall columns(DWCs)are widely used in the separation of ternary mixtures,but rarely seen in the separation of petroleum fractions.This work develops two novel and energy-efficient designs of lubricant-type vacuum distillation process(LVDP)for the separation of hydroisomerization fractions(HIF)of a hydrocracking tail oil(HTO).First,the HTO hydroisomerization reaction is investigated in an experimental fixed-bed reactor to achieve the optimum liquid HIF by analyzing the impact of the operating conditions.A LVDP used for HIF separation is proposed and optimized.Subsequently,two thermal coupling intensified technologies,including side-stream(SC)and dividing-wall column(DWC),are combined with the LVDP to develop side-stream vacuum distillation process(SC-LVDP)and dividing-wall column vacuum distillation process(DWC-LVDP).The performance of LVDP,SC-LVDP,and DWC-LVDP are evaluated in terms of energy consumption,capital cost,total annual cost,product yields,and stripping steam consumption.The results demonstrates that the intensified processes,SC-LVDP and DWC-LVDP significantly decreases the energy consumption and capital cost compared with LVDP.DWC-LVDP further decreases in capital cost due to the removal of the side stripper and narrows the overlap between the third lube oils and fourth lube oils.This study attempts to combine DWC structure into the separation of petroleum fractions,and the proposed approach and the results presented provide an incentive for the industrial implementation of high-quality utilization of HTO through intensified LVDP.
基金This research was supported by grants from the National Natural Science Foundation of China(31772170)the Project of the Education Department in Hubei Province(B2020038)+3 种基金the Natural Science Foundation of Jingzhou City(2020CB21-30)the China Agriculture Research System(CARS-24-C-02)the Beijing Key Laboratory for Pest Control and Sustainable Cultivation of Vegetablesthe Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(AAS-ASTIP-IVFCAAS).
文摘Bradysia cellarum Frey (Diptera: Sciaridae) is an important subterranean pestand is especially damaging to Chinese chive. An effective and moreenvironmentally safe method than pesticides is needed for its control. Theefficacy of B. cellarum control, growth of Chinese chive and soil microbialdiversity were investigated after uae of soil solarization to exterminate thisinsect pest. The results show that on the first day after soil solarization 100%control of B. cellarum was achieved. Growth of Chinese chive was lower insolarized plots than in control plots over the first 10 days after treatment. Chivegrowth in solarized plots increased subsequently to match that in the controlplots. Moreover, the soil microbial community diversity in the treatment groupdecreased initially before gradually recovering. In addition, the abundance ofbeneficial microorganisms in the genus Bacillus and the phyla Proteobacteria,Chloroflexi and Firmicutes increased significantly. Soil solarization is thereforepractical and worthy of promotion in Chinese chive-growing regions.