The Trans-North China Orogen is a major Neoarchean Paleoproterozoic collisional orogenic belt above the North China Craton, formed due to prolonged and complex processes. Even though many NeoarcheanPaleoproterozoic ma...The Trans-North China Orogen is a major Neoarchean Paleoproterozoic collisional orogenic belt above the North China Craton, formed due to prolonged and complex processes. Even though many NeoarcheanPaleoproterozoic magmatic and metamorphic activities have been reported, due to the Huozhou Complex’s small outcropping range, little attention has been paid to the origin of various igneous rocks of the Huozhou Complex in the center of the Trans-North China Orogen. The Huozhou Complex, located south of the Luè liang, Wutai, and Hengshan complexes, is an important window into the Early Precambrian structure and evolution of the North China Craton. Its magma and metamorphism are crucial to understanding the development of the structural evolution of the Trans-North China Orogen. The Huozhou metamorphic complex area exposes a range of Precambrian metamorphic rocks, among which the most extensively dispersed is felsic biotite plagioclase gneiss. In this study comprehensive geological field survey, micropetrology,chronology, geochemistry, and Hf isotope analysis were carried out for the Qinggangping and Anziping gneiss in the north of the Huozhou Complex. The results show that the magmatic zircon age of the Qinggangping gneiss is2196 ± 14 Ma, and its protolith is I-type granite, formed by partial melting of igneous rocks in the absence of weathering. Its source is mainly the juvenile crust from depleted mantle dating 2431–2719 Ma, with a small amount of mantle-derived material. The Anziping gneiss has a metamorphic zircon age of 1931 ± 13 Ma with an S-type granite protolith belonging to peraluminous granite.The Anziping gneiss is formed by recycling pre-existing crustal components at 2613–2848 Ma. A minor quantity of mantle-derived magma is also introduced to the crust simultaneously. The samples of Qinggangping gneiss and Anziping gneiss show the characteristics of obvious negative Nb, Ti, and P elements in the spider diagram of primitive mantle standardization. This implies that the rocks have the characteristics of magmatic rocks in an island arc or subduction environment, which could have formed in the tectonic environment of the continental margin arc.展开更多
Division of high resolution sequence stratigraphy units based on wavelet transform of logging data is found to be good at identifying subtle cycles of geological process in Kongnan area of Dagang Oilfield. The anal- y...Division of high resolution sequence stratigraphy units based on wavelet transform of logging data is found to be good at identifying subtle cycles of geological process in Kongnan area of Dagang Oilfield. The anal- ysis of multi-scales gyre of formation with 1-D continuous Dmey wavelet transform of log curve (GR) and I-D discrete Daubechies wavelet transform of log curve (Rt) all make the division of sequence interfaces more objec- tive and precise, which avoids the artificial influence with core analysis and the uncertainty with seismic data and core analysis.展开更多
基金supported by the open fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources,Institute of Geology,Chinese Academy of Geological Sciences (Number J1901-16)the project of graduate education and teaching reform in Shanxi Province (Award Number 2021YJJG147)+3 种基金the teaching reform project ‘‘Geographic Modeling,Simulation and Visualization’’ established by Shanxi Normal University (Number 2019JGXM-39)‘‘The Research Start-up Fund of Shanxi Normal University for Dr. Peng Chong in 2016’’(Number0505/02070438)‘‘The Research Start-up Fund of Shanxi Normal University for Dr. Liu Haiyan in 2017’’(Number 0505/02070458)‘‘The Research Fund for Outstanding Doctor in 2017’’(Number0503/02010168)。
文摘The Trans-North China Orogen is a major Neoarchean Paleoproterozoic collisional orogenic belt above the North China Craton, formed due to prolonged and complex processes. Even though many NeoarcheanPaleoproterozoic magmatic and metamorphic activities have been reported, due to the Huozhou Complex’s small outcropping range, little attention has been paid to the origin of various igneous rocks of the Huozhou Complex in the center of the Trans-North China Orogen. The Huozhou Complex, located south of the Luè liang, Wutai, and Hengshan complexes, is an important window into the Early Precambrian structure and evolution of the North China Craton. Its magma and metamorphism are crucial to understanding the development of the structural evolution of the Trans-North China Orogen. The Huozhou metamorphic complex area exposes a range of Precambrian metamorphic rocks, among which the most extensively dispersed is felsic biotite plagioclase gneiss. In this study comprehensive geological field survey, micropetrology,chronology, geochemistry, and Hf isotope analysis were carried out for the Qinggangping and Anziping gneiss in the north of the Huozhou Complex. The results show that the magmatic zircon age of the Qinggangping gneiss is2196 ± 14 Ma, and its protolith is I-type granite, formed by partial melting of igneous rocks in the absence of weathering. Its source is mainly the juvenile crust from depleted mantle dating 2431–2719 Ma, with a small amount of mantle-derived material. The Anziping gneiss has a metamorphic zircon age of 1931 ± 13 Ma with an S-type granite protolith belonging to peraluminous granite.The Anziping gneiss is formed by recycling pre-existing crustal components at 2613–2848 Ma. A minor quantity of mantle-derived magma is also introduced to the crust simultaneously. The samples of Qinggangping gneiss and Anziping gneiss show the characteristics of obvious negative Nb, Ti, and P elements in the spider diagram of primitive mantle standardization. This implies that the rocks have the characteristics of magmatic rocks in an island arc or subduction environment, which could have formed in the tectonic environment of the continental margin arc.
文摘Division of high resolution sequence stratigraphy units based on wavelet transform of logging data is found to be good at identifying subtle cycles of geological process in Kongnan area of Dagang Oilfield. The anal- ysis of multi-scales gyre of formation with 1-D continuous Dmey wavelet transform of log curve (GR) and I-D discrete Daubechies wavelet transform of log curve (Rt) all make the division of sequence interfaces more objec- tive and precise, which avoids the artificial influence with core analysis and the uncertainty with seismic data and core analysis.