期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
伊朗里海森林山坡上生长的欧洲鹅耳根系分布和抗张强度研究 被引量:4
1
作者 Ehsan Abdi baris majnounian +1 位作者 Hassan Rahimi Mahmud Zobeiri 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第2期105-110,I0001,共7页
Biomechanical characteristics of the root system of hornbeam (Carpinus betulus) were assessed by measuring Root Area Ratio (RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hil... Biomechanical characteristics of the root system of hornbeam (Carpinus betulus) were assessed by measuring Root Area Ratio (RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran. RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m. In total 123 root specimens were analyzed for tensile strength. Results indicate that in general, RAR decreases with depth, following a power function. The RAR values in up and down slopes have no significant statistical differences. In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m. The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively. The number of roots in the up and down slope trenches was not significantly different. In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function. The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively. Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots. The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, following a power law equation. Using ANCOVA, we found intraspecies variation of tensile strength. 展开更多
关键词 BIOMECHANICAL Hornbeam Carpinus betulus root area ratio (RAR) root system root tensile strength.
下载PDF
Distribution and tensile strength of Hornbeam(Carpinus betulus) roots growing on slopes of Caspian Forests,Iran 被引量:2
2
作者 Ehsan Abdi baris majnounian +1 位作者 Hassan Rahimi Mahmud Zobeiri 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第A2期105-110,共6页
Biomechanical characteristics of the root system of hornbeam(Carpinus betulus) were assessed by measuring Root Area Ratio(RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly ter... Biomechanical characteristics of the root system of hornbeam(Carpinus betulus) were assessed by measuring Root Area Ratio(RAR) values and tensile strength of root specimens of eight hornbeam trees growing on hilly terrain of Northern Iran.RAR values of the roots were obtained using profile trenching method at soil depth of the top 0.1 m.In total 123 root specimens were analyzed for tensile strength.Results indicate that in general, RAR decreases with depth, following a power function.The RAR values in up and down slopes have no significant statistical differences.In most cases, the maximum RAR values were located in soil depth of the top 0.1 m, with maximum rooting depth at about 0.75 m.The minimum and maximum RAR values along the profiles were 0.004% and 6.431% for down slope and 0.004% and 3.995% for up slope, respectively.The number of roots in the up and down slope trenches was not significantly different.In the same manner as for RAR, number of roots distributing with depth was satisfactorily approximated a power function.The penetration depths of above 90 percent of the roots were at soil depths of 50 cm and 60 cm for up and down slopes, respectively.Results of Spearman's bivariate correlation showed no significant correlation between the RAR value with tree diameter and gradient of slope and number of roots.The mean value of root tensile strength was 31.51 ± 1.05 MPa and root tensile strength decreased with the increase in root diameter, follow-ing a power law equation.Using ANCOVA, we found intraspecies variation of tensile strength. 展开更多
关键词 BIOMECHANICAL Hornbeam CARPINUS betulus ROOT area ratio(RAR) ROOT system ROOT tensile strength.
下载PDF
Effects of wheeled cable skidder on rut formation in skid trail-a case study in Hyrcanian forest 被引量:1
3
作者 Meghdad Jourgholami baris majnounian 《Journal of Forestry Research》 SCIE CAS CSCD 2011年第3期465-469,共5页
The impact of skidding operations on forest soils can be divided into three major categories: soil profile disturbance, soil compaction, and soil puddling and rutting. The present study was designed as a factorial ex... The impact of skidding operations on forest soils can be divided into three major categories: soil profile disturbance, soil compaction, and soil puddling and rutting. The present study was designed as a factorial experiment in the Kheyrud Forest with a Timberjack cable skidder to evaluate the influences of number of machine passes and soil moisture of skid trails on rutting over a fine-grained soil, and to quantify these effects. The effects of soil moisture of 20% 30%, 30% 40% and 40% 50% and different levels of compaction were studied. Compaction treatments were applied using different numbers of skidding passes (1, 5, 10, 15, 20, 25, 30 times). Result shows that an increase in the number of machine passes could increase rut depth, but the majority of rutting was occurred after the initial few machine passes. Also rut depth at soil moisture of 40% 50% was higher than rut depths at soil moisture of 30% 40% and 20% 30%. The average rut depth in soil with 20% 30%, 30% 40% and 40% 50% moisture was 17, 22 and 35 cm, respectively. Rut depths were increased significantly with soil moisture and number of machine passes. It is suggested that skidding operations should be planned when soil conditions are dry in order to minimize rutting., but if skidding must be done under wet conditions, the operations should be stopped when machine traffic could create deep ruts. 展开更多
关键词 wheeled cable skidder rut formation disturbance soil moisture number of passes
下载PDF
How does organic matter affect the physical and mechanical properties of forest soil? 被引量:1
4
作者 Ehsan Abdi Shojaat Babapour +2 位作者 baris majnounian Ghavamodin Zahedi Amiri Azade Deljouei 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第3期654-659,共6页
Determining the physical and mechanical properties of soil and its behavior for engineering projects is essential for road construction operations. One of the most important principles in forest road construction, whi... Determining the physical and mechanical properties of soil and its behavior for engineering projects is essential for road construction operations. One of the most important principles in forest road construction, which is usually neglected, is to avoid mixing organic matter with road materials during excavation and embankment construction. The current study aimed to assess the influence of organic matter on the physical properties and mechanical behaviors of forest soil and to analyze the relation between the amount of organic matter and the behavior of forest soil as road material. A typical soil sample from the study area was collected beside a newly constructed roadbed. The soil was mixed with different percentages of organic matter(control treatment, 5, 10, and 15% by mass) and different tests including Atterberg limits, standard compaction, and California bearing ratio(CBR) tests were conducted on these different soil mixtures. The results showed that soil plasticity increased linearly with increasing organic matter.Increasing the organic matter from 0%(control) to 15%resulted in an increase of 11.64% of the plastic limit and 15.22% of the liquid limit after drying at 110 ℃. Also,increasing the organic matter content reduced the soil maximum dry density and increased the optimum moisture content. Increasing the organic matter from 0 to 15% resulted in an increase of 11.0% of the optimum moisture content and a decrease of 0.29 g/cm;of the maximum dry density. Organic matter decreased the CBR, which is used as the index of road strength. Adding 15% organic matter to the soil resulted in a decrease of the CBR from 15.72 to 4.75%. There was a significant difference between the two drying temperatures(60 and 110 ℃) for the same organic matter mixtures with lower water content values after drying at 60 ℃. The results revealed the adverse influence of organic matter on soil engineering properties and showed the importance of organic matter removal before excavation and fill construction. 展开更多
关键词 Atterberg limits California bearing ratio Hyrcanian forest Organic matter content Soil compaction
下载PDF
Traditional mule logging method in Hyrcanian Forest: a study of the impact on forest stand and soil
5
作者 Meghdad Jourgholami baris majnounian 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第4期755-758,共4页
We inventoried plant regeneration and soil compaction along mule trails to evaluate damage to forest stands and regeneration follow- ing mule hauling before and after operations in Kheyrud Forest in the Hyrcanian Fore... We inventoried plant regeneration and soil compaction along mule trails to evaluate damage to forest stands and regeneration follow- ing mule hauling before and after operations in Kheyrud Forest in the Hyrcanian Forest in northern Iran. About 22% of regenerating plants on mule trails were damaged following mule logging, and damage to trees was observed. In harvested units after timber extraction, 4.3% of the total area (12 ha) was covered with mule trails. Mule passes and slope gradi- ent, and twofold interactions between mule passes x slope gradient had no significant effect on soil bulk density (p 〈 0,05). Mule iogging had a statistically significant effect on soil bulk density along the mule trails before and after mule passes. Soil bulk density increased Significantly as mule passes increased in number. The degree and level of compaction did not differ with trail slope. With respect to damage to residual stands and seedlings, soil compaction and disturbance to soil, traditional mule log- ging is the preferred skidding method in the steep terrain conditions in the Hyrcanian Forest in northern Iran. 展开更多
关键词 Mule logging stand damage SEEDLING soil compaction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部